Persistence of Vision ™ Ray-Tracer
POV-Ray ™ Version 3.1g

User's Documentation
May 1999
Copyright 1999 POV-Team ™

POV-Ray ™ is based on DKBTrace 2.12 by David K. Buck and Aaron A. Collins.

POV-Ray, POV-Help, POV-Team, and Persistence of Vision are trademarks of the POV-Team.

N 1111 £ o [0 To4 1 oo TSP TP P TP PSP PRPRPPRPION 10
1.1 Program DESCIIPLIONcviiitiiitiite ettt bbb bbb bbbt bttt bbb e bt 11
1.2 What IS RAY-TIACING? .ottt ettt bttt b bbb e bt b e e e st s b b e s b e bt e b e et e b e sbenbesbeebeenes 11
1.3 WRNALIS POV-RAY?.....c ittt bbbttt ettt n e 11
1.4 HOW DO I BEOINT ..ttt bbb bbbt bt s e b e bt e bt e bt e b e et et e b e et e b e sbeebesbeebeenes 12
1.5 Notation and BasiC ASSUMPLIONSueiiiiiiiieitesie ettt sttt sb e bbbt be et eseeseesbesbesbeenes 12
1.6 What'S NEeW iN POV-RAY 3,17t 13

16.1 Media Replaces Halo & AIMOSPNEIEcuiiiiiiiiiieeeee bbb 13
1.6.2 NEW HMACTO FRALUIEo.eii ittt ettt ettt et e et e e et e e nbeeebe e e nbeeentneens 14
1.6.3 ATTAYS AGABA ..ottt b et b bbb bbbt bbbttt b bbbt 14
16.4 File 1/0 and Other DIrECLIVESvcuieieieeseese sttt sttt reera e e e e e seennenreeneenes 14
1.6.5 AAAITIONA] NEW FRALUIES.......cccveiiirie ittt st e sb e st e s et e s e sbesssbessbeesabessaseeesrbeesreessnns 14

N = 1= o Lo T oo N 1 o] T P 16

2.1 L@ L0 3 A g U 1= SO U SRR 16
211 Understanding POV-Ray's COOrdinate SYSEMcciiiiiiiiie it 16
2.1.2 Adding Standard INCIUAE FIlEScviiiiiiec s 17
2.13 AGAING @ CAMEIA. ...ttt bbb bbb bbb bbbt bbb e bt bbbt b bbbt b n st et 18
214 DeSCrDING AN ODJECL.....c.eitiieiiiiiee bbbt bbb 18
2.15 Adding TeXture t0 an ODJECE.coviiiiiiiie b 19
2.16 DefiniNg @ LIGNE SOUICEoviviiiiiiiiie bbb bbbt 19

2.2 SIMPIE SNAPES ...ttt ettt E e bbb bbbttt bbb e bt 20
221 BOX ODJECE ..ttt bbbt bbb bttt b et e bbb b enes 20
2.2.2 (010 T @] o 1T OO TP SO TP U RO PP PP 20
2.2.3 (@3 1100 (=1 g @ o] T SR P 21
2.2.4 T AL @ o] T SRS 21

R N 01 G @ o] [od i TSP TSSO P PP S P R PRPR PSPPI 21
23.1 WAL IS CSG? ...ttt b bbb bbbttt bt 21
2.3.2 CSG UNION ...ttt bbb bbb bbbtk b e e bt bt bbbtk bbb e n 22
2.3.3 (OS] G [) (T 1-T o1 T) o S 23
2.34 (OS] G DT i =1 ot P 23
2.3.5 CSG MBI, ...ttt b bbbk h et b bR e R Rk b R R R R n e r e er e 25
2.3.6 CSG PHUFAIIS. ...ttt b bbb bbb na s 25

2.3.6.1 COINCIABNCE SUITACEScviitiieiiiteieee sttt rns 25

2.4 AUVANCEA SNAPES ...ttt bbbt b e bbbt bt b et ettt eh e bRt h e e bbbt b nne e 25
24.1 ST Tot 0] o ol ==L (o] 1 o] <o RS 26
24.2 127 o] o1 @] o] < RS 32

2.4.2.1 Component Types and Other NeW FEatUrES.........cccouiiieiiiiiere i 34
2.4.2.2 Complex Blob Constructs and Negative Strength..........ccooeiiiiiiiiiiiien s 34

May 1999

POV-Ray 3.1g User Documentation Page 1

2.4.3 HEIGNE FIEIA ODJECT ...t bbb bbbttt et sb bbb 36

24.4 LAtNE ODJECL ... ettt bbbttt bbb bt e e b bbb ene s 38
2.4.41 Understanding The Concept of SPIINES........covoiiiiiiii e 39
2.4.5 IMIESN OBDJECL ...ttt bbbt b bbb bbb bRt b bbbt b et 43
2.4.6 POIYGON ODJECL......cuiitiietiiteeee bbbttt bbb bbbttt et 44
2.4.7 PFISIM ODJECL. ...ttt bbb bbb bbbt b bbb b 46
2.4.7.1 Teaching An Old SPINE NEW TTICKSc.eiveiiiiieiieriee et 47
o S 11 ToTo i I I T 571 T o P 48
2.4.7.3 MUILIPIE SUD-SNAPEScveieieie ettt b e b b nn bbb 49
2.4.7.4 Conic Sweeps And The Tapering EFfECTooo i s 50
2.4.8 Superquadric EHIPSOid ODJECLccoiiiiiieieie ettt se e 52
2.4.9 Surface of REVOIULION ODJECL.........couiiiiiiiiiiiee et bbb 55
2410 TXE ODJECE. vtttk b bbbtk b bbbt b bbb Rt e bbb bt bbb bt ens 57
o T R o U1 o] 1= o USROS 60
2.5 THE LGN SOUFCE.....eiieiiiteieeieste et ettt b e bbbtk b et b ettt s bttt st et be et 65
25.1 THe POINTHGNT SOUICE.....civiiitiitectee bbbttt et b et sb e e ebe e 65
2.5.2 THe SPOLHGNT SOUICE......iitiiiiiie bbb et eb e et sbe e ebe e 66
253 The CylNArical LIt SOUICEciiiiiiiieie ettt e 67
254 THE AFEE LIGNE SOUICE . ..viiiitiieeiict ettt b et b e et b e bbb et e ebe e 67
2.5.5 The AMDIENE LIGNT SOUICEcviviitiiieiii ettt et sb et sb e et e 68
2.5.6 LIGNE SOUICE SPECIAIS..... ittt bttt e bbbt b et e et bbb i 69
2.5.6.1 USIiNG ShadOWIESS LIGNLSccviiiiiic ettt s e et eebeeeeenee s 69
2.5.6.2 Assigning an Object t0 @ LIGNt SOUICE........cciviiii ittt be e ae e 69
2.5.6.3 USING LIGNt FAAING.......ooiiiiieiicccc sttt te e be et e st e s be e be e beebeeneean 70
2.6 SIMPIE TEXIUIE OPLIONS . .viiieiiiiete ettt bttt b e bt bbb e s e e b e b nb e eb e s b e bt e s e e b et sbeebeene e 70
2.6.1 SUITACE FINISNES ...evveiieciisec ettt e e st e te e et e e se e st e e e e e eesneene e e e teneeneenreens 71
2.6.2 AAAING BUMPINESS ...ttt ettt b bbb bbbt b e eb ettt 71
2.6.3 Creating ColOr PALIEIMSc.viiieiiierieiee sttt bbbttt b et b et 71
2.6.4 Pre-0efiNBO TEXIUIES ..oiuvivieieeiee ettt ettt e e e e s e e e bestesbesreenees e e neentenreeneanes 72
2.7 AAVANCET TEXIUIE OPLIONS ...eviriiiiiteieiiite ettt sttt sttt b et bbbt et b et et bt ettt ebe st 72
2.7.1 PHOMENES ...ttt bbb bbbt b bRt bbb n bbbt e e nn 73
2.7.1.1 UsSIiNg Color LSt PIgMENTSccviiiiiie ittt ettt st te e te et e e e esteenbaeeennne s 73
2.7.1.2 Using Pigment and PAttEINSccoiieiiieieeie et ste et steete e ee e ste e steeae e e snaesseesteeaeeeenneeas 73
2.7.1.3 UsSINg Pattern IMOGITIErSeoiiiiicc et te e be e et e st e b e e beeeeenee s 74
2.7.1.4 Using Transparent Pigments and Layered TEXIUIES........ccvcvueiveiieiieerieeiiesieeseesieesneesveesseeveseessnens 75
2 T O T Vol o T 1= 0 Y oL USRS ORPRPR 76
2.7.2 NOITNAIS ... e b et R e bRt b b et r ettt r e nn e 77
2.7.21 Using Basic NOrmal MOGIfIErs.........cooeiiiiiiiiiees e 77
2.7.2.2 BIENAING NOFMAISoiviiiiiiieicie et ettt b ettt be b 78
2.7.3 TS TS 80
2.7.3. 1 USING AMDIENT ..ttt bbb bbbtk bttt b ettt st e bt b 80
2.7.3.2 Using Surface HIghHGNLScoiiiiiiec e 81
2.7.3.3 Using Reflection and MEtalliC.............ccoiiiiiiiiiic e 82
T S U 1 Vo Lo L= o= T3 Lo USRS 83
2.7.4 WOrking With PIgMENT IMIAPS........ccuiiiiiiccie ettt sr ettt e e ta e taestaesteesreeneas 83
2.75 Working With NOFMal IMIaPS.........coouiiiiircce ettt et e e be e be e s e e s raesteeseeeneas 84
2.7.6 WOrKing With TEXIUIE IMAPScvviiieiieccie ettt s b st e e e e e st e s ta e te e teesteesreeneas 85
2.1.7 WOrKING WIth LISt TEXIUIESveiiveieie ittt ettt e e e ettt ste e sta et e et e e sbeesaesnaesteesteeseeeneas 85
2.7.8 WAt ADOUL THIES? ..ottt sttt e e st e e s testesteeneer e e s eneeneennesreenean 86
2.79 AVETAGE FUNCLION ...ttt bbb bbb bbbt bbbttt b bbbt 87
2.7.10 WOrking With LaYered TEXIUMES........ccuiriiiiiieiiiteei sttt bbb 87
2.7.10.1 Declaring Layered TEXIUIESc..civierieeiie ettt sttt sttt bbbt 89
2.7.10.2 Another Layered Textures EXAmMPIe.........c.oooiiiiiiiiiii i 89
2.7.11 When All Else Fails: Material IMaPSco.eiviiriiiiirieiiiniesie sttt 92
2.7.12 Limitations OF SPECIAl TEXIUIES........cccviiieiiieie ittt e e e et e e s st e e be e e entestaesbeenbeenaeaseeas 94
2.8 L0 LY [0 1 IO Uy 1= USSR 95

May 1999 POV-Ray 3.1g User Documentation Page 2

2.8.1 USING FOCAI BIUF ...t bbbt bbb bt et sn bbbt ens 95

2.9 UsSINg AMOSPNEITC EFECLS .. .o bbbt be b b 96
29.1 THE BACKGIOUNG ..ottt sb ettt b ettt sb e bbbttt b e et ebesr e ebe e 97
29.2 THE SKY SPNEIE ...ttt b e et b e bbb et 97

2.9.2.1 Creating a Sky With @ Color Gradientc.cooiiiriiiiiieieie e 97
2.9.2.2 ACAING thE SUN.....oiiiiiiii e ettt b e bbbt bbb e bt 99
2.9.2.3 AddIiNG SOME ClOUUScviiiriiiiiiiieiiitee bbbttt b et nbe s 100
29.3 THE FOQ oottt et bbb e E R bR etk b et b et 101
2.9.3.1 A CONSLANT FOQ 1.nveiieiiiieieiestieit ettt b ettt et e s e s b e e st e e s be e nbeebe e e e enneanneenreneee e 101
2.9.3.2 Setting @ Minimum TraNSIUCENCYcouiiuiiiiiiiiiiie ettt bbbt 102
2.9.3.3 Creating @ Filtering FOQcooiiiiiieiiiee et b e bbbt 103
2.9.3.4 Adding Some TUurbulence t0 the FOQ........cocuiiiiiiiiiiee e 103
2.9.3.5 USING GIOUNG FOQ....ciuiiuiiiitiiteitieieeiete sttt sttt bttt b e bbbt e e et ek saesbesbeeneenen 104
2.9.3.6 Using Multiple Layers 0f FOQ ... e 105
2.9.3.7 FOQ and HOIIOW OBJECES......c.iiuiiiiiiiiitiiteest bbb 106
294 THE RAINDOWeiiiiicie ettt st et e Re e s et et et s eesteeReene e e e ntesreaneeneeneenes 106
2.9.4.1 Starting With a Simple RAINDOW............cciiiiiiiiiie e 106
2.9.4.2 Increasing the RaiNDOW'S TTANSIUCENCYc.coviiiiiriiiiiiiiieire e 108
2.9.4.3 USING 8 RAINDOW AFCeiviiiiieiiiiie ettt bbbttt 109
2.9.5 A 31T =LA o o PSSP 110
2.9.5.1 The Clock Variable: Key TO ILAIL ... e 110
2.9.5.2 Clock Dependant Variables And Multi-Stage ANIMALIONScccooiiiiiriiriicieee e 112
2.9.5.3 The Phase KEYWOITccviiiiiiieieciesic sttt et e et e et e st e s ta e s teesteesteeteeneesnnesneensee e 113
2.9.5.4 DO NOt USE JItLEr OF CranG........ccuiirriiiiriiiiiiniisent st 114
2.9.5.5 INTFIIE SEIINGS ..vvetiiieeie ettt bbbttt bbbttt 114

3 POWV-RAY OPLIONS ...ttt sttt b ekt b bt et e st e e e e eb e b e b e b £ e Rt e a b e e e b e nbeeb e e b e e nb e beeb e b e ebeene e e ennas 116

3.1 Setting POV-RAY OPLIONS ..ottt ettt stk b et b et b et b ettt et 116
3.11 ComMMANG LiNE SWILCNESc.vcuiiiiciiieiicist e n s 116
3.1.2 USING INT FIIES ...ttt bbbttt en s 116
3.1.3 Using the POVINI Environment Variableccoooviiiiiiiiii et 118

3.2 OPLIONS RETEIENCE.ceiitiiteiti ettt bbbkt h et bbbt bt bt s e et et e e b eb e b e et et e b e nbesbeebeens 118
321 ANIMALTION OPLIONS ...ttt e bbbt bt b e et e b e sbesb e s bt et e e e e besbeebeane e 119

3.2.1.1 External ANIMALION LOOPcoieiiiiiieiiestisie sttt sttt sttt e bbbttt se e e b e sbesne e 119
3.2.1.2 Internal ANIMALION LOOPciiuiiiiriiiitiiteieienee sttt bbbttt 119
3.2.1.3 Subsets of ANIMELION FIaMES.......cciiiiiiiieiitiieir bbbttt b 120
3.2.1. 4 CYCHC ANIMELION ...tttk bbbttt bbbt et b e bt 121
3.2.1.5 FIEId RENAEIING ...ttt bbbt bbbt b et b et 121
3.2.2 OULPUL OPLIONS ...ttt stttk b etk bbbt b bbb bt ek b e et eene e 121
3.2.21 General OULPUL OPLIONSouiiviiiiiriiiitiite ettt bbbttt bbb b 121
3.2.2.1.1 Height and Width of QULPUL............cciiiiiiieie e re e 121
3.2.2.1.2 Partial OULPUL OPLIONSccuviivieiiieiiicie ettt be e st e e e sreesteebeeneesneesnee e 122
KO N T 101 (=Y (U o 1] Lo @] o1 o] SO STR 122
3.2.2.1.4 RESUMING OPLIONS.....ueiiiiitieitieieeiestesee s e e e te e srese e sae e s te e s taestaesbaeteeeesseesaeeaaeeabeenseeeeansesseeses 122
2 B 1] o] - VA @ 1N 1 o TV]] o] ST 123
3.2.2.2.1 Display HardwWare SEtINGS.......cccoeiiiriiiiieieesieeee sttt e sne s 123
3.2.2.2.2 Display Related SELLINGSccveveirieieiiiieiei ettt sb e e ebe s 124
3.2.2.2.3 IMIOSAIC PrEVIEW........etiiiiiiieieie ittt ettt bbbttt b etk b ettt sb ettt sbe e et nnes 125
3.2.2.3 File OULPUL OPLIONS....cuiitiiitiitiiitiste ettt ettt bbbttt bbb 126
3.2.2.3.1 OULPUL FITE TYPE .ttt bbbt bbbt eb e et 126
3.2.2.3.2 OULPUL FITE NAME.....cceiiiiite bbb et b e et eb e e ebe e 127
3.2.2.3.3 OULPUL FIle BUFFEE ..ottt et 127
3.2.2.4 CPU UtIlization HiSTOQramueiiiiiie ettt e e ste et snaesneesna et e enaesneennee e 127
B.2.2.4. 1 FIIE TYPR ottt bbbt h R bbbt b et 128
3.2.2.4.2 FIlE INAIME. ...ttt ettt r et r et r e e er e r e r e r s 128
B.2.2.4.3 GFIl SIZE ottt bbbt bbbt 128

May 1999 POV-Ray 3.1g User Documentation Page 3

3.2.3 SCENE PArSING OPLIONS. ...ttt ettt b ettt ettt sb e sb et e bt b e bbb sbeenes 129

3.2.3. 1 INPUL FILE NAME ...ttt ettt bbbt bt s e e b bt sb e b e e bt eb e e b e besbeebeene e 129
3.2.3.2 LIBFAIY PANS ..ot bbbt 129
3.2.3.3 LaNQUAGE VEISIONviiiiiitiiieieie sttt sttt sttt b et b etk b e ekt b e bbbttt b et et sb ettt st 129
3.24 Shell-0ut t0 OPErating SYSLEIMc.iiiiiiriiiere bbb et nee 130
3.2.4.1 String Substitution in Shell COMMANGS ..o 130
3.2.4.2 Shell ComMAaNd SEQUENCING ...c.veutrviieiiitiieiisieeeiere ettt bbbt bbbttt sttt 131
3.2.4.3 Shell Command REtUMM ACHIONS..........ciiiiieieeeei ettt enee e eeseesrenneens 131
3.25 TEXE OULPUL ..ttt bbbt e b btk b e bt e bt e Rt e s e e b et nbeeb e e nt e b e sbeebesbeeneenes 133
32,51 TXE SEIBAIMS. ... ittt etttk b e bt bt et e e b e e s be e s b e e sbe e bt e areebbeeb e e nbe e b e e snensnesreenaes 134
3.2.5.2 CONSOIE TEXE OULPUL ...ttt bbbttt b e bbbt bt e e et e e sb et b sbeene e 134
3.2.5.3 Directing Text Streams t0 FileS.......c.coiiiiiiiiiice e 135
3.2.5.4 HelP SCreeN SWITCNES.ot bbbttt b e bbb be e 136
3.2.6 TTACING OPLIONS. ...ttt sttt b bt bbb e e e et sb e eb e s bt bt e b e e ne e b et e ebesb e et e e seenee e 136
3.2.6.1 QUANITY SEEINGS . .eveveieieeieeieete ettt e st st sr e neere e e e aesaestesbesreeteaneeneesaeneenreereeneens 136
KT T = o [1o TSy 1§V T=1 1] o S 137
3.2.6.3 Automatic Bounding CONIOL........cccoveiiiiiiiisise e s na e seesreene e 137
3.2.6.4 RemoVING USEr BOUNGINGoiiiiieeieieriesiesiesie st eteeseee st te e ssaeneeee e saessestesnaeseensesseseesseseessessenns 138
3.2.6.5 ANti-ALASING OPLIONS ..eviiiiiiieiieieiese sttt e seesbesbesaesteareesee e e teneenreeneens 138

4 SCENE DESCIIPLION LANGUAGEeiteeeteititetiiteriete sttt sttt ettt ettt b stk s bbbttt b bbbt eb et n e e st 142
4.1 LANQUAGE BASICSveeuviiiieiiieitei it eete it et et e e s e ste e s te e tesaeesaeesbe e s be e be e s be e s eesseesteesbeeaeenbeenseaaeeaneenteebeereereeas 142
411 1deNtifiers AN KEYWOITSccoiiiiiiiciie et sb et r e b sr e ebe e 142
4.1.2 LO00] 101 11T=] 01 £ SRR 144
413 FIOBE EXPIESSIONSeviieiiiteietiit ettt b et b bbb bbbttt b ettt bbb 145
N T A oL =] OSSPSR 146
e T o (o= [0 T) T PR 146
4.1.3.3 FlOAE OPEIALOIS. ... ectiitiietiite ettt sttt ettt sttt bbb bbb bbb b bbb st b e st bbbt e bt 147
4.1.3.4 BUIlt-iN FIOAt TENTITIEIS......eiiiiiiie et s sb e 147
G B ST = To o] 1= LT o)V AT o PSP 149
4.1.3.6 FIOGE FUNCLIONS. ...ttt bbbttt bbbttt nbe e et st e sbesbeeneas 149
414 VBCEOT EXPIESSIONS. ...ttt sttt ettt b bbbkt s e bt e bt e h e bt bt e bt e e et e ne e eb e ebeebe e bt e b e besbeebeane e 151
4141 VECEON LITEIAIS. ...ttt bbb bbbttt et be bbb b ne s 152
A.1.4.2 VECION TUBNTITIEIS. ...ttt bbbt ettt seesbesbeeneas 152
R B o1 (o] Q@ o =T o 10 £ S TP U TP O R PR UPPPUPVTPRPRPROS 152
4.1.4.4 OPErator PrOMOLION.cciiiiitiiieiee ettt et b ettt bttt b et 153
4.1.45 BUIlt-IN VeCtOr IAENTITIEIS ...ocviiieieece st nre e enees 153
Y T (o] g U Tod £ o] USSP 154
415 SPECITYING COIOIS ...ttt bt bbbttt bt 154
TS N o o] GV o1 (o] -SSP 155
T A o (o] gl 1= ALY o] o 3RS 156
4.1.5.3 COlOr IABNTITIEIS ...t bbbt e e bbbt bt et et b e b e beeneas 156
Y A o (o] @] o= =1 (o] £ S ST 157
4.1.55 Common Color PItFallS........cooiiiee e 157
4.1.6 RS0 T o J T PSOTE O ST T RPR O SORP U PTTRPRURO 158
A4.1.6.1 SENG LITEIAIS ..ot bbbttt bbb 158
4.1.6.2 SHNG IABNTITIEIS. .. cuiitiictiiee bbb et b e et et 159
4.1.6.3 SENG FUNCLIONS ...oviiitiitiieeiee e bbbttt b et b et b et b e bt 159
4.1.7 ATTAY TABNTITIEIS ...t b et b et se e ebesr et e 160
A.1.7.0 DECIAIING AFTAYS ...cveiveiete ittt sttt sttt b ettt b ettt b et b e bbb bbb b e bt skt e bt be et b et b 160
4.1.7.2 AITAY INTAIIZETS.....coiciiieec bbbttt b et b e et et 161
4.2 I a0 U o TN B T =Tod (Y= PSS PSSPSN 161
421 Include Files and the #INCIUAE DIFECLIVE.cciiiiiiieeie e e 162
4.2.2 The #declare and #10Cal DIFECTIVESoiiiiiiiieiee bbb 162
4.2.2.1 DeClaring identifiers.......ccviiiice et erre e 163
4.2.2.2 HABCIArE VS. HIOCAL ... e 164

May 1999 POV-Ray 3.1g User Documentation Page 4

4.2.2.3 1dentifier NAME COIISIONSccoicueiii ettt ettt e s s bt e s s bta e s s sbb e e e s s ba e e e s sabaneessnres 164

4.2.2.4 Destroying Identifiers With #UNAET............cco oo 166
423 FHIE 17O DIFBCLIVEScveeveeie ettt ettt ettt et e e be et e e ta e s beesbe e sbeebesasesaeesasesbeesbeesbaesbens 166
4.2.3.1 The HFOPEN DIFECLIVE.....c.oiiiciie ettt bbbttt be s 166
4.2.3.2 The #HCIOSE DIFECIIVE ...uviiviiiieicte ettt et ettt e et e e sbe e tesreesbeesbeentesnbeeneeeaee e 166
4.2.3.3 The #EA0 DIFECLIVEccviitii ettt et be e be et e e e et e s baesbeesbeesbeenbesneeenresaee e 166
4.2.3.4 The W DIMBCHIVE. ...c.viieii ittt et ettt e s be e sbe e aesreesbeesbeenbesnreentesaee e 167
424 The FAETAUIE DITECIIVE......eciiieiee ettt be e be b e e e s ae e be e teesreesbeesaeeanas 168
4.25 THe HVEISION DIFBCLIVEc.eiiuiitiiieeieeee et bbbttt b e bbb b enes 169
4.2.6 CONAILIONAL DIFBCTIVES. ...ttt bbbttt b e bbbt e et b ebeenes 169
4.2.6.1 The #if..#else... HeNU DIFECHIVESoouiiiie it 169
4.2.6.2 The #ifdef and #ifNdef DIFECHIVES.ccui i e 170
4.2.6.3 The #switch, #case, #range and #break DIreCtIVES..........cccooiiiriiiiiiiiee e 170
4.2.6.4 The #While.. #8NA DIFECHIVEcciiiiie ettt e b 171
4.2.7 USEr MESSAGE DIFECLIVES ...ttt bbb bbbt bbbttt nbe e 172
4.2.7.1 TeXt MESSAGE STIBAIMS.cviitiiiiiiietieeeie ettt et r bbb et e nresr bbbt e nnennenne s 172
4.2.7.2 TEXEFOIMELEING ... ittt bt b etk bbbt et b et b e bt 173
428 USEE DETINE IMIACTOS ...ttt ettt ettt e et e et e e ta e s be e s be e sbeebeenbesaseeaeesbeesbeesbeesbeas 173
4.2.8.1 The #MAaCIO DIrBCHIVEccuii e ittt ettt be et e et e st e et aesbe e s beesbeenbesnbesaresree e 173
4.2.8.2 INVOKING IMBCTOSoviitiiteiieiiste ettt bttt b et b bbb bbb bbbt s b et 174
4.2.8.3 Are POV-Ray Macros a FUNCLION OF @ MACIO?........cccueiieieeie et 175
4.2.8.4 Returning a Value LiKe @ FUNCLIONcccoiiiiieie ettt 175
4.2.85 Returning Values Via ParamMeterscccciieiiiiiiiee ettt ste e s e e s ste v e e sneesnee e 176
4.3 POV-Ray COOrAINALE SYSLEIMvviiieeiieeiieeite ettt ettt e e st e e e ste e see s e e saseste e beesbeesbesraesraesreesrnesreennas 177
431 TEANSTOIMALIONS ...t eieee ettt bbbttt e bbbt b e bt esb et et e b b e sbesbeebeenes 177
L R I =1 1 - T OO RSOOSR USSR PRRPRPTO 178
B.3.1.2 SCAIE ..ottt e e he e te e eh e ahe e abe e be e beeabeebaeabeeebeeabeebeenreenreeare e 178
G T I T = (o] - - SRS 179
4314 MAEIX KEYWOITeeiiiieieiteieie sttt bbb bbbttt bbbttt 179
43.2 TranSfOrMAtioN OFAET........ccviiiiiie ittt be e st be e beebe et e et e sbeesbaesbeesbeeanas 179
433 TrANSTOIM LOBNTITIEIS. ... cti it be e e e st e s raesreesbeesaeeanas 180
4.3.4 Transforming TeXtures and ODJECESeivuiiiiiiice ettt ra e e e sre e 180
4.4 (08 10111 - W T T TP U T U U T PPR PP UPTURRPRO 181
4.4.1 PlaCing the CAIMEIAccieiiieiiecie ettt et et e e s e e s be e s te e teenbeenteaasesteeteeteeteaneeas 182
O R I Yo% L4 o g =V o I o] G AN PSSP 182
A I 4TI S V =Tt(o] SSST 183
AA.1.3 ANQGIE .t bbbt h e bR bbbt e et et nbe b beeneas 183
4414 The DIrECHION VECIONiiuiiitiicie ettt ettt sttt sttt et e et e et e st e e s be e sbeestesaeesbeesbeearesneeentesare e 183
4415 UPaNd RIGNE VECIOIScuiiviiiiiiieiee sttt b et bbb 184
44151 ASPECE RALIO.....iiviiiitiiteiiitiie ettt bbbttt bt 184
44,152 HANUBANESSoeiviiitiiite ettt ettt sttt e te e ste e ete et e et e eteeebeesbe e beebeesbesseesbeesbeeabeesbeenbeenbeesbeesbenseeas 185
4.4.1.6 Transforming the CamMEIa.......ccoeiiiiiiiii ittt bbb b 185
4.4.2 BN LTS d (0] =11 o ST 186
443 FOCAI BIU ... et b bbbt s bbbt b e e bt et et sbeabenbeeneas 187
4.4.4 Camera Ray PertUrbationcccoiuiiiiiieie ettt e st e te e reesreenreenas 187
445 CAMEIA TABNEITIEIS ...t et b bbbt b e sb e bt b e e bbb sbeenes 188
O O o] =Tt SO TSRO PP PR PRTOROPT 188
451 FINIte SOIIT PrIMITIVES.ottt sb e bt e bbb eneas 189
00 5t = 1 o o USSP 189
Nt = o USSR 191
R T I T] 1 SRS 192
A5 L4 CYIINUEI ..ot b e bbbt b bbb bbbt et bttt b et b 193
A5. 15 HEIGNE FIBI. ..ottt b ettt bbb 193
45,16 JUHA FFACIALccviiiiiiie ettt et et ae e be et e et eetb e e taesbeesbeesbeenbeenbeenreeaee e 196
A.5.1.7 LAENE bbbt e b b bbbttt be bbb eneas 198
A.5.1.8 PIISIM 1ottt sttt ettt bbbt b et s e bt bk bR AR £ e b bRt Rt R e bt b e e b e bbb e beene s 199

May 1999 POV-Ray 3.1g User Documentation Page 5

A.5.1.9 SPNBIE... et h et bk bRt e R £ et bRt b b e Rt R e et e b nrenbenbeeneas 201

45.1.10 Superquadric EHHPSOITcviiiieiiie sttt e b 202
4.5.1.11 SUrface 0Ff REVOIULION.........oiiii et ettt srenee e eneas 203
A5, 102 TOXE ettt E e R E bbb bbbt b bt bbb 205
0 e 0L SRS STSTR 206
45.2 FiNite PAtCh PrIMIIVES ...oveiiiiceciee ettt snesre s e neeneestesnenneas 206
0 N = Tod ¥ o ol = | o OSSPSR 207
4.5.2.2 DISC cuveuieiiiie st st et sttt ettt ettt R R Rttt R e EeeRe Rt e Rt e R e aentenReeReer e e tetenrenrenneenes 208
A.5.2.3 ISR .t bbb E bRt h bt bt Rt et et nbe b beene s 208
A.5.2.4 POIYGON ...ttt bbbt e bbb bR £ bbb Rt bt ekt b et et b e b beene s 209
4.5.25 Triangle and SMOOth THANGIE.......ccviiiii e et ere e 210
453 INFINItE SOOI PrIMITIVES ..ot 211
A.5.3.1 PIANG ...t bbbt bbbt Rt bt e bt e et et nbenbenbeeneas 211
4.5.3.2 Poly, Cubic and QUANTICccoueieiieectr ettt et et re e beeeesneesnnesneennee e 211
T O B © 1 o | TSRS 213
454 CONSLIUCEIVE SOIIT GEOMELIYiveiiiiiiieei sttt 214
o Va5 o (=Y T o @ 10] o [USSP 214
R U 1o o] o USSP 215
R B 101 (=T 1= o1 T] o USSR 216
O B T i =10 ot OSSPSR 216
A.5.4.5 IMIBIQE ..ttt bbb bRt bR bR e Rt R £ e R bR h e Rt Rt bt et et et enbenbeeneas 217
455 [T) AT U ot S 218
A.5.5.1 POINE LIGNES ...ttt et b bbb b bbbt b e bt e b e et et sbe b beene s 218
A.5.5.2 SPOLHGNTS. . .eeeitieiiiee e bbb bbb b bbbt bttt b b aeeneas 218
T T 8 V] T o g Tox | oo £ SRR 222
A5.5.4 ATEA LIGNTS ..ot bbbt b s 222
4555 ShadOWIESS LIGNTS...c..iiiiiiiiiiitiiese bbbt bbbt b e b 224
A.5.5.8 LOOKS_TIKE . .oviiieiiteieice e bbb bbbttt b et b 224
4557 LIGNTFAUING ..ottt ettt bbbt b et b e et et 224
4558 Atmospheric Media INTEraCtion..........c.cooiiiiiiiiiese e 225
4559 AMOSPNEriC ALENUALION ...ooviiiiiitiicere ettt bbb 225
4.5.6 (@ o T=To 1Y ToTo 11 1T £ 225
A.5.6.1 ClIPPEA_BY .ot b bbbttt bt bbb ene s 226
4.5.6.2 BOUNGEU_BY.....oiiiiiitiiiiii ittt bbbt sa e bt b e bt b e et et bbb ene s 227
4.5.6.3 IMAEETTAL ...evieeieieeee et r s 228
4.5.6.4 INVEISE ...ttt 228
A.5.6.5 HOIOW. ...t bbbttt b e bbbt bt et bbb ene s 229
A.5.6.6 INO_SNAUOW ..ottt bbb et b e bbbt bbbt b et et b et 229
O I A (1 o SRR 229
4.6 L1 o] P 230
46.1 Why are Interior and Media NECESSAIY?cceviirieiierieisie ettt sb e sbe s 230
4.6.2 EMPty and SOlId ODJECES. ..o 231
4.6.3 RETTACTION ...ttt b bbbttt 232
4.6.4 ATEENUABTTION ...ttt r e bt et b et b e sr et b e nn et r e nn e renn e r e 232
4.6.5 FAKEA CAUSTICS ...veveeieeeiise ettt bbbttt b 233
4.6.6 (@ o T=To 1V =T - TS 233
4.7 TEXIUIES .ttt bbb bbb E R R R b e b 234
4.7.1 T 11T] PP OSSRPR 235
4.7.1.1 SOlid COlOr PIGIMENTSviieiiitiiieieie sttt st bbb bbbt 236
4.7.1.2 COolOr LISt PIGIMENTS. ...c.iitiiieiiitiiieiite ettt bbbt sb et bbbt b et st 236
e T o] [o] g 1V - T OSSOSO PSP PTRTPPOURURPTRRON 237
4.7.1.4 Pigment Maps and PIgMENTt LISES.......covoiiiiiiiiieieee e 238
4.7.10.5 IMAGE IMAPS......eeiiuieitieieeie sttt ettt e e r e 239
4.7.1.5.1 Specifying an IMAGE IMBPoouiriiiiiiiiiiit ettt 239
4.7.1.5.2 The Filter and Transmit Bitmap MOIfIerscccccoeiiiii i 240
4.7.1.5.3 Using the Alpha Channelccouiiiiiii i ae e 241

May 1999 POV-Ray 3.1g User Documentation Page 6

L T @ 1V Tod QO] o] USSR 241

4.7.2 [N 0] 117 LTSS P PP PPRP 242
A.7.2.1 SIOPE IMAPS....ceieeiectiieeeete ettt bbbtk b et b et b e bbbt b bbb et nr et 243
4.7.2.2 Normal Maps and NOIMAL LISESccviiiiiiiiniineieise et 245
A.7.2.3 BUMP IVIAPS ..ottt etk h e bRt nr e ene s 246

4.7.2.3.1 Specifying @ BUMP IMEDociiiiiiiiiie et 246
A.7.2.3.2 BUMP_SIZE ..ottt bbb bbbt 247
4.7.2.3.3 Use_Index and USE_CoOlOrccuiiriiiiiiiiirieieistee et 247

4.7.3 FINESI .t 247
A.7.3. 1 AMDIBNT et r s 248
4.7.3.2 Diffuse REFIECTION TTEIMSoviiiiiciic e e 249

4.7.3.2.1 DITIUSE .ottt 249
4.7.3.2.2 BIIHTBNCE. ...ttt ettt 249
4.7.3.2.3 Crand GraiNiNESS......cveeirireeieirireeiesrisseesse st es s bt sr bt s bbb s et nn et nn e esenn s 250
A4.7.3.3 HIGNIIGNES ..o bbbttt bt 250
4.7.3.3.1 Phong HIghIIGNESo.oiuiiiiie et e 250
4.7.3.3.2 Specular HIghIIGNTocoiiiiiii b 250
4.7.3.3.3 Metallic Highlight MOGITIer........c.ooiiiiiiiii e 251
4.7.3.4 SPecular REFIECHIONc.oiiiieice bbbt 251
A.7.3.5 TIIOESCONCE. ...ttt ettt bbb bbb bbb bbb b bt e bbb bt e bt et b e bt 252

4.7.4 HAIO .. 253

4.7.5 PALIEINEA TEXIUIES. ...ttt b bbb b et b bbbt r e 253
7.5 1 TEXIUIE IS .. .ottt ettt b e bt bt et e s bt e he e e b b e bt e bt e bt e st e s heeebe e abe e b e enneenreenee e 253
B.7.5.2 THIBS oottt E et r et Rt r et r et r 254
A.7.5.3 MBI MBS ...ttt bbbt bbbt e bt sb e b e bt bt e bt et et e b e beene s 255

4.7.5.3.1 Specifying @ Material IMaP........ccooeiiiiiiiiiei e 255

4.7.6 LAYEIEA TEXIUMES......vtiteeeieite ettt b et bbb bbbt b bbbt bttt b e s b 257

4.7.7 PAITEINISttt 258
7.7 1 AGALE .ot r e 258
A.7.7.2 AAVEIAQE ...ttt b s e R R R R R R Rt n e r e nr e n e ene s 258
A.7.7.3 BOXEU ..ot e bbbt bbbt bttt 259
A.T.T4 BOZO ..ottt r et n s 259
AT.7.5 BIICK oottt et r s 260
AT.7.8 BUMPS oo R R et r e n 260
AT.T7.T7 CRECKEL .ttt ettt r bRt b et b bt n e n 261
A.7.7.8 CIACKIE ..ot n s 261
T O3 V] 1T To [o | SR 261
AT7.7.00 DENSILY _FII .o bbbttt et e 262
4.7.7.11 DIBNES <. e e 262
O O v € - To 1= o | OO PO OO P OO ST POURTPPOORPRPTRON 262
A.7.7.03 GFANITE. ettt ettt bbb bbb bbbt bbbt bbb 263
4.7.7.14 HEXBGON ... et 263
4.7.7.15 [T o = Vo PSSR 264
AT.7.06 MANGET ..ot ere s 264
AT.T.07 MAIDIE e 265
A.T.7.18 OMHON.coiiiiiitiiteie ettt r et E ettt R et R r et n e n s 265
A.7.7.09 PIANAT ottt R et r e n 265
47720 QUINTEA ..ot 265
AT7.7.210 RAGIAL ..o bbb et b e b 268
A.7.7.22 RIPPIES et bbbt bbb e b e et b e et nr et 268
A.7.7.23 SPNEIICAL ..o bbbttt 268
AT.T7.24 SPITAIL oo bbb bbb bbb bbb bbb 268
AT.T7.25 SPITAIZ et b bbb ettt 269
AT.7.26 SPOLEA .ottt bbb bbbt btk h ekt sb et b e e b et 269
A.T.7.27 WAVES ..otttk h ettt h ettt h et E et R et b Rkt r e n e re 269
A.7.7.28 WOOU.....o ittt bbbt r ekt R et r e e r e ere 269

May 1999 POV-Ray 3.1g User Documentation Page 7

A.7.7.29 WIINKIES ..ottt r et ar e et renr e enenn e ere s 270

4.7.8 PaLtErN MOGITIEIS.eiiieecie e 270
4.7.8.1 Transforming PATEINScooiiiiieie e b e ettt b e sbe s 271
4.7.8.2 FrequEnCY ANG PRESEcciiiitirieiiieiiei ettt sttt sttt s b et b et sb et b et b et 271
A.7.8.3 WAVETOIMS ...ttt bbbttt b e bbb et b e bbb et e b 272
A.7.8.4 TUDUIBNCE.....coiite ettt ettt bbb bbb bbb bbb et bt s b e bt 273
B.7.8.5 OCTAVES ...ttt etk h et h et b R R R Rt R R R Rt R r e n e ene s 274
A.7.8.8 LAMDUA. ..ottt bbb bbb bbbt bbb 274
T A O 1111 - ST TSP P PSP PP SV PPRURO 274
A.7.8.8 WVAIPS ..ottt et b e h bR R R R R Rt R e Rt r et nn s 274

4.7.8.8.1 BIACK HOIE WA ...t bbbt b bbb 275
4.7.8.8.2 REPEAL WA ..eiieiieiiietieiti ettt bbbt e e bt b et e Re e bt e Rt e bt e re b e e 277
4.7.8.8.3 TUIDUIENCE WAEID ...ttt bbb bbbttt bbb b b 278
4.7.8.9 BiItMap MOGIFIEIS ..ottt et bbbt et be bbb ene s 279
4.7.8.9.1 ThE ONCE OPLION ...ttt ettt bbbt b bbbttt b et 280
4.7.8.9.2 The Map_tYPE OPLION.....ceiiiiiietiie ettt b bt sbe s 280
4.7.8.9.3 The interpolate OPLiONcc.eiiiiiiiieiitee st 280

4.8 o T SRS 281

48.1 Y Lo T T Y] 1= OO P OO P PP PPRPR 282
A.8. L1 ADSOIPLION ...ttt sttt bbbt b e bbb e b e bbb bbbk bbb bbb 282
A.8.1.2 EMISSION .ottt ettt r ettt Rt R Rt n 282
I e TS Tor: L1 (=11 | oSS 282

4.8.2 SAMPIING PAIAIMELEIS.iteitieiiii ettt ettt bbbt b e et e b bt sb e bt e b e e b e besbesbeenes 285

4.8.3 DIBNSITY ...ttt R R R bRt 285
4.8.3.1 General Density MOGITIEIScciiiiiie e re e e snee e 286
4.8.3.2 Density With COIOT _MAP ..ot e 286
4.8.3.3 Density Maps and DENSILY LISES........eviereiiirieieenieise sttt s 287
4.8.3.4 Multiple Density vS. MUILIDIE MEAIAcooiiiiiiiieicee e 287

4.9 AIMOSPNEIIC EFFECTS....oitiiieiie et b et bbb 288

491 AIMOSPNEITIC MEIA......eeeiiitieie bbb et b ettt b et sb e e ebe e 288

4.9.2 BACKGIOUNG ...ttt bbb b bbb bbbt b bbbttt b s 289

493 O ettt R Rt r e n e 289

494 SKY SPREIE ...ttt bR bbbt bRt e b b resneenes 290

495 REINDOW ... bbb e bt b e bttt r et n s 291

O I €1 o] o =1 IS T=1 11 o S OPSPR 292

4.10.1 ADC_BAIOUL......coeiiiiiiiiiit i 292

4.10.2 AMDIENT LIGNT ..ot 293

4.10.3 ASSUMEI_GAMMEA ...ttt sttt e sb et s bbbt bbb e bt e bbbt b e es e bbbt ne b s 293
4.10.3.1 IMONIEOT GAMMA ..ttt sttt sttt b etk bt s b ettt s b et ekt b etk b et et s bbb sb et et st 293
4.10.3.2 1mMAage File GAMMA......ciiiieiiiieiiee ittt b ettt s b e b 294
4.10.3.3 SCENE FIlE GAIMIMAcviiviiiiiicieiie et ettt b e et b bbbt b e bt 294

4104 HF _GIAY_16. .. et r et h bR E R Rt r e nr e r e 295

4.10.5 Trd _WAVEIENGLN.....cieccee e ettt ettt te e nre e reereere e 295

L O VT D G I (ot -1V SR 295

O /T O G 11 =1 =T o1 £ o] SR 296

4.10.8 NUMDEI_OF WAVES.......ociiiiciie ettt e et e et e e este e s beesteesteesteenteenreaneennee e 296

4.10.9 RAGIOSITY ..veveieiieieceiiteee et h bRt 297
4.109.1 HOW RAGIOSITY WOTKSveiiiciece ettt s esaaenteenbaenbeenaeenee s 297
4.10.9.2 AJJUSEING RAIOSILYeuviiiitiieiiiiesie ettt bbb 297

4.10.9.2. 1 BIIGNINESS ...ttt bbb bbbttt 298
4.10.9.2.2 COUN. .ottt ke h e s bbbt e Rt bbbt et e et n e bt nn e 298
4.10.9.2.3 diStANCE_MAXIMUITE ...viitiiiiiittieet ittt bbb bbbt b st b et s b e bt b 298
4.10.9.2.4 EITON_DOUNG......iiiiiitiitiieiii ettt bbbttt b bbbt 299
4.10.9.2.5 gray_threSNOIa........coiiiiiiiiie b 299
O B ST (oA VLV - o (] -1 (] USSR 299
4.10.9.2.7 MINIMUM L _TEUSE. ...vteutteuteesteestestesteesteesteesteasteaseasseasseassesteesteesseesseesseesseenseansesssesseessenssenssensenns 299

May 1999 POV-Ray 3.1g User Documentation Page 8

4.10.9.2.8 NEAIEST_COUNTiiviiiiiiieitii et e sttt ettt s et e st e st e et esa e e ss e e sab e e s s beesnbeessbeesabeesrbeennbeeanes 299
4.10.9.2.9 TECUISION_TIMIT....oviiiiiiiieiit e 300
4.10.9.3 TIPS ON RAGIOSITY vvovviuieieiiiiieii et sttt ettt e et st e tesaeete e e eseesaenteneenreseenneenens 300

5 APPENDICES ...ttt bbbt bbb Rk bR R R bbb bbbt 301
5.1 Copyright, Legal Information and License -- POVLEGAL.DOCcccooiiiiiiniiiiie e 301
511 General License Agreement -- POVLEGAL.DOCcociiiiiiiiiie et 301
512 USAQE PIOVISIONS ...ttt b ettt e e bbbt bt e s et e b ek eb e e b e e seebesbesbesbeeneas 301
513 General Rules FOr All DIStHDULIONoviiriiiiicee e 301
514 Definition Of "FUIl PACKAGE"o i s 302
5.15 Conditions For CD-ROM or Shareware/Freeware DiStribution..............ccoooovininiinnsinensese 302
5.1.6 Conditions For On-Line Services And Bbs's Including Internet...........ccccoevvieieneieneneinenecsee 302
517 Online Or Remote EXecution Of POV=-RAYccceiiiiriiiiiieiiiieise et 303
518 Permitted Modification And CUSIOM VEISIONSccueiiirieiriiriiisieniesie et 303
5.1.9 Conditions For Distribution Of CUStOM VEISIONS..........coiiiiiiiiiiieiienetse e 304
5.1.10 Conditions For Commercial BUNGIINGccccoiviiriiiiiiiie e 304
5.1.11 POV-Team Endorsement Prohibitions.........cccooviiiiiiiiieiescse e 305
5.1.12 Retail Value Of ThiS SOTIWAIEcoveiiiieiiiceiee e 305
5.1.13 Other PrOVISIONS.ciiitiieiiitiieeiiite sttt ettt r et b e sr e bt ar et ar e en e nr e ar e nn e enennes 305
5.1.14 ReVOCALION OF LICENSEc.viiiiiiieiiiieiet sttt ar et an e arenn e enennes 306
5115 DISCIAIMEN ...ttt r e bkt R et bt r e bRt R e r e 306
5.1.16 TECHNICAI SUPPOIT ...ttt bbbt sb e bt bbbt e e et b e ebesne e 306
ST U 120} TSP 306
521 CONLACTING the AULNOTS......eiuiiiiieie bbb bbbttt b et e 308
53 What to do if you don't NAVE POV-RAY..........cceriiiiiriiiiiiescneiese bbb 308
531 Which Version of POV-Ray SNOUIA YOU USE?cviiriiiiiiieiiienieiesie et sne e 308
5.3.1.1 Microsoft WindOWS 95/98/NTcccveiirierieiesieieeeeieee et ste e e ee e e ste e snestasnaenaeseenseseessesnens 308
5.3.1.2 MS-D0S & WINUOWS 3. X ...ueveiuraerireerieieniesiessessesseeseessesesssssessesseesesssessessessessesssssesssessessessessessessenns 309
5.3.1.3 LiNUX TO INTEI X8Oveviiiieiieiiiiies bbb 309
5.3.1.4 APPIE MACINTOSK ...ttt bbb bbbt bttt b e bbb beene e 310
5.3.15 MG ettt bbb R R bR e R bR ekt b Rt b b et 311
B.3.18 SUNODS ..ottt bbb bR R bR R R R R R bbbtk bbbt b 311
5.3.1.7 GENEIIC UNIX ..eiviitiiiiiitiite ettt bbbttt b et n e n 312
5.3.1.8 Al VEISIONS ...ttt ettt b bt r ettt 312
5.3.2 Where t0 FiNd POV-RAY FIlEScoiiiiiiii et 313
5321 World Wide WeDSIte WWW.POVIAY.OFTcveriiiiriiieiisieniesisiesieieie sttt 313
5.3.2.2 Books, Magazines and CD-ROMScccccviiiriiiieieriiie st e e seesnesneens 313

5.4 COMPIlING POV-RAY ..ottt bttt sttt bbb bbb bbb bbbt ene e 313
54.1 DIFECLONY SEIUCKUIEoviiiitiiteeet sttt e bbb bbb bbb bbb bbbt bbb e 314
5.4.2 Configuring POV -RAY SOUICEc.eiiiiiiiiiiiiiie ettt sttt 315
543 CONCIUSION ..ottt bbb bbbt Rt R et n et n et 315
5.5 YU To T Lo t=To I =T Lo o S 315
LT |10 (< G TP PP TP PSP TP PT P PSPPI PSPRPPSPRIR 317
May 1999 POV-Ray 3.1g User Documentation Page 9

1 Introduction

This document details the use of the Persistence of Vision ™ Ray-Tracer (POV-Ray ™). It is divided into five parts:

1) This introduction which explains what POV-Ray is and what ray-tracing is. It gives a brief overview of
how to create ray-traced images.

2) A "Beginning Tutorial” which explains step by step how to use the different features of POV-Ray.

3) A complete reference on "Scene Description Language” in which you describe the scene.

4) A complete reference on "POV-Ray Options™ which explains options (set either by command line switches
or by INI file keywords) that tell POV-Ray how to render the scenes.

5) And in our "APPENDICES" you will find some tips and hints, where to get the latest version and versions
for other platforms, information on compiling custom versions of POV-Ray, suggested reading, contact
addresses and legal information.

POV-Ray runs on MS-Dos, Windows 3.x, Windows for Workgroups 3.11, Windows 95, Windows NT, Apple
Macintosh 68k, Macintosh Power PC, Amiga, Linux, Sun-OS, UNIX and other platforms.

We assume that if you are reading this document then you already have POV-Ray installed and running. However
the POV-Team does distribute this file by itself in various formats including online on the internet. If you don't
have POV-Ray or aren't sure you have the official version or the latest version, see appendix "What to do if you
don't have POV-Ray".

This document covers only the generic parts of the program which are common to each version. Each version has
platform-specific documentation not included here. We recommend you finish reading this introductory section
then read the platform-specific information before trying the tutorial here.

The platform-specific docs will show you how to render a sample scene and will give you detailed description of the
platform-specific features.

The MS-Dos version documentation contains a plain text file POVMSDOS. DOC which contains its specific docs. It
can be found in the main directory where you installed POV-Ray such as C: \ POVRAY3.

The Windows version documentation is available on the POV-Ray program's Help menu or press the F1 key while
in the program.

The Mac platform documentation consists of a self-displaying document called "POV- Ray MacOS Read Me"

which contains information specific to the Mac version of POV-Ray. It is best to read this document first, to learn
how to set up and start using the Mac version of POV-Ray. This document is in the "Docunent at i on" folder in
the main "POV- Ray 3" folder.

The Amiga version documentation is made up of Html documents, stored in the same place of general POV-Ray
docs; the 'root' document is "POVRAY 3:POV-Reference/AmigaPOV.html" when the program is installed following
the instruction given. Amiga specific documentation and POV-Ray general docs are available pressing Help key in
the POV-Gui program; this feature is available in POV-Gui since version 2.1

The Linux version documentation contains a plain text file povl i nux. doc which contains its specific docs. It
can be found in the main directory where you installed POV-Ray such as/ usr/ povr ay3.

The SunOS version documentation contains a plain text file povsunos. doc which contains its specific docs. It
can be found in the main directory where you installed POV-Ray such as / usr/ povr ay3.

The generic Unix version documentation contains a plain text file povuni x. doc which contains its specific docs.
It can be found in the main directory where you installed POV-Ray such as/ usr/ povr ay3.

May 1999 POV-Ray 3.1g User Documentation Page 10

1.1 Program Description

The Persistence of Vision™ Ray-Tracer creates three-dimensional, photo-realistic images using a rendering
technique called ray-tracing. It reads in a text file containing information describing the objects and lighting in a
scene and generates an image of that scene from the view point of a camera also described in the text file. Ray-
tracing is not a fast process by any means, but it produces very high quality images with realistic reflections,
shading, perspective and other effects.

1.2 What is Ray-Tracing?

Ray-tracing is a rendering technique that calculates an image of a scene by simulating the way rays of light travel in
the real world. However it does its job backwards. In the real world, rays of light are emitted from a light source
and illuminate objects. The light reflects off of the objects or passes through transparent objects. This reflected
light hits our eyes or perhaps a camera lens. Because the vast majority of rays never hit an observer, it would take
forever to trace a scene.

Ray-tracing programs like POV-Ray start with their simulated camera and trace rays backwards out into the scene.
The user specifies the location of the camera, light sources, and objects as well as the surface texture properties of
objects, their interiors (if transparent) and any atmospheric media such as fog, haze, or fire.

For every pixel in the final image one or more viewing rays are shot from the camera, into the scene to see if it
intersects with any of the objects in the scene. These "viewing rays" originate from the viewer, represented by the
camera, and pass through the viewing window (representing the final image).

Every time an object is hit, the color of the surface at that point is calculated. For this purpose rays are sent
backwards to each light source to determine the amount of light coming from the source. These "shadow rays" are
tested to tell whether the surface point lies in shadow or not. If the surface is reflective or transparent new rays are
set up and traced in order to determine the contribution of the reflected and refracted light to the final surface color.

Special features like inter-diffuse reflection (radiosity), atmospheric effects and area lights make it necessary to
shoot a lot of additional rays into the scene for every pixel.

1.3 What is POV-Ray?

The Persistence of Vision ™ Ray-Tracer was developed from DKBTrace 2.12 (written by David K. Buck and Aaron
A. Collins) by a bunch of people, called the POV-Team ™, in their spare time. The headquarters of the POV-Team
is on the internet at http://www.povray.org (see "Where to Find POV-Ray Files" for more details).

The POV-Ray ™ package includes detailed instructions on using the ray-tracer and creating scenes. Many stunning
scenes are included with POV-Ray so you can start creating images immediately when you get the package. These
scenes can be modified so you don't have to start from scratch.

In addition to the pre-defined scenes, a large library of pre-defined shapes and materials is provided. You can
include these shapes and materials in your own scenes by just including the library file name at the top of your scene
file, and by using the shape or material name in your scene.

Here are some highlights of POV-Ray's features:

* Easy to use scene description language.

* Large library of stunning example scene files.

* Standard include files that pre-define many shapes, colors and textures.

* Very high quality output image files (up to 48-bit color).

* 15 and 24 bit color display on many computer platforms using appropriate hardware.
* Create landscapes using smoothed height fields.

* Many camera types, including perspective, panorama, orthographic, fisheye, etc.

* Spotlights, cylindrical lights and area lights for sophisticated lighting.

* Phong and specular highlighting for more realistic-looking surfaces.

May 1999 POV-Ray 3.1g User Documentation Page 11

* Inter-diffuse reflection (radiosity) for more realistic lighting.

* Atmospheric effects like atmosphere, ground-fog and rainbow.

* Particle media to model effects like clouds, dust, fire and steam.

* Several image file output formats including Targa, PNG and PPM.

* Basic shape primitives such as ... spheres, boxes, quadrics, cylinders, cones, triangles and planes.

* Advanced shape primitives such as ... Torii (donuts), bezier patches, height fields (mountains), blobs, quartics,
smooth triangles, text, fractals, superquadrics, surfaces of revolution, prisms, polygons, lathes and fractals.

* Shapes can easily be combined to create new complex shapes using Constructive Solid Geometry (CSG). POV-
Ray supports unions, merges, intersections and differences.

* Objects are assigned materials called textures (a texture describes the coloring and surface properties of a shape)
and interior properties such as index of refraction and particle media (formerly known as "halos™).

* Built-in color and normal patterns: Agate, Bozo, Bumps, Checker, Crackle, Dents, Granite, Gradient, Hexagon,
Leopard, Mandel, Marble, Onion, Quilted, Ripples, Spotted, Spiral, Radial, Waves, Wood, Wrinkles and image
file mapping.

* Users can create their own textures or use pre-defined textures such as ... Brass, Chrome, Copper, Gold, Silver,
Stone, Wood.

* Combine textures using layering of semi-transparent textures or tiles of textures or material map files.

* Display preview of image while rendering (not available on all platforms).

* Halt and save a render part way through, and continue rendering the halted partial render later.

1.4 How Do | Begin?

POV-Ray scenes are described in a special text language called a "scene description language". You will type
commands into a plain text file and POV-Ray will read it to create the image. The process of running POV-Ray is a
little different on each platform or operating system. You should read the platform-specific documentation as
suggested earlier in this introduction. It will tell you how to command POV-Ray to turn your text scene description
into an image. You should try rendering several sample images before attempting to create your own.

Once you know how to run POV-Ray on your computer and your operating system, you can proceed with the
tutorial which follows. The tutorial explains how to describe the scene using the POV-Ray language.
1.5 Notation and Basic Assumptions

Throughout the tutorial and reference section of this document, the following notation is used to mark keywords of
the scene description language, command line switches, INI file keywords and file names.

keywor d mono-spaced bold POV-Ray keywords and punctuation
+W640 +H480 mono-spaced bold command-line switches

C:.\ MyFI LE. POV mono-spaced file names, directories, paths
SYNTAX_ITEM italics, all caps required syntax item
[SYNTAX_ITEM] italics, all caps, braces optional syntax item
SYNTAX_ITEM... italics, all caps, ellipsis one or more syntax items
[SYNTAX_ITEM...] italics, all caps, braces, ellipsis zero or more syntax items

Value_1 italics, mixed case a float value or expression
<Value_1> italics, mixed case, angle braces | a vector value or expression

[ITEM] bold square braces ITEM enclosed in required braces

May 1999 POV-Ray 3.1g User Documentation Page 12

ITEM1 | ITEM2 vertical bar choice of ITEM1 or ITEM2

In the plain ASCII version of the document there is no visible difference between the different notations.

Note that POV-Ray is a command-line program on MS-Dos, Unix and other text-based operating system and is
menu-driven on Windows and Macintosh platforms. Some of these operating systems use folders to store files
while others use directories. Some separate the folders and sub-folders with a slash character (/), back-slash
character (\), or others. We have tried to make this documentation as generic as possible but sometimes we have to
refer to folders, files, options etc. and there's no way to escape it. Here are some assumptions we make...

1) You installed POV-Ray in the "C: \ POVRAY3" directory. For MS-Dos this is probably true but for Unix it might
be "/ usr/ povr ay3", or for Windows it might be "C: \ Pr ogr am Fi | es\ POV- Ray for W ndows", for
Mac it might be "MyHD: Apps: POV- Ray 3: ", or you may have used some other drive or directory. So if we tell
you that "Include files are stored in the \ povr ay3\ i ncl ude directory,” we assume you can translate that to
something like ": : POVRAY3: | NCLUDE" or "C: \ Progr am Fi | es\ POV- Ray for W ndows\i ncl ude"
or whatever is appropriate for your platform, operating system and installation.

2) POV-Ray uses command-line switches and INI files to choose options in all versions but Windows and Mac also
use dialog boxes or menu choices to set options. We will describe options assuming you are using switches or INI
files when describing what the options do. We have taken care to use the same terminology in designing menus and
dialogs as we use in describing switches or INI keywords. See your version-specific documentation on menu and
dialogs.

3) Some of you are reading this using a help-reader, built-in help, web-browser, formatted printout, or plain text file.
We assume you know how to get around in which ever medium you're using. We'll say "See the chapter on "Setting
POV-Ray Option" we assume you can click, scroll, browse, flip pages or whatever to get there.

1.6 What's New in POV-Ray 3.1?

Here is an overview of what is new in POV-Ray 3.1 since version 3.0.

1.6.1 Media Replaces Halo & Atmosphere

The keywords hal o and at nospher e have been totally eliminated with no backwards compatibility of any kind
provided. They have been replaced by a new feature called nedi a. At the scene level, media acts as atmospheric
media for fog, haze, dust, etc. On objects, media is not part of texture like halo was. Object media is now part of a
new feature called i nt eri or. Media is not just a rename for halo. It is a new model with some similar features of
halo. BECAUSE POV-Ray 3.1 DISCONTINUES SOME 3.0 FEATURES YOU MAY WISH TO KEEP 3.0 TO
RENDER OLDER SCENES.

Any pattern type (bozo, wood, dent s, etc.) may be used as a densi t y function for media.

New patterns spheri cal , cyl i ndri cal , pl anar, and boxed added for pi gment , nor mal , t ext ur e, and
density.

New wave types cubi c_wave and pol y_wave Float have been added.

New object modifieri nteri or{...}. Interior contains information about the interior of the object which was
formerly contained in the f i ni sh and hal o parts of at ext ur e. Interior items are no longer part of the texture.
Instead, they attach directly to the objects. The f i ni sh items moved are i or, causti c,f ade_power, and
fade_di stance. Therefracti on keyword is no longer necessary. Any i or other than 1.0 turns on

May 1999 POV-Ray 3.1g User Documentation Page 13

refraction. These 5 finish keywords which are now part of interior will still work in finish but will generate
warnings. Some obscure t ext ur e_mmap statements with varying ior will not work.

Added r ef | ecti on_exponent Floattofi ni sh to give more realistic reflection of very bright objects.

1.6.2 New #macro Feature

Add fully recursive and parameterized #macr o directive. Define like this...
#macro MyMacro (P1, P2, P3) ... #end
Invoke like this...
MyMacro (5, x*5, MyText ure)
Note no '#' sign precedes invocation. Macros can be invoked almost anywhere. Parameters must be identifiers or
any item that can be declared, MyMacr o(pi gnent { G een}, MyCbj ect) for example.

Added #| ocal IDENTIFIER= STATEMENT as alternative to #decl ar e to create temporary local identifier in
macros or include files.

1.6.3 Arrays Added

Added multi-dimension arrays

#decl are MyArray=array[20]
or

#l ocal PrivateArray=array[30]
or

#decl are Rows=5; #decl are Col s=4;
#decl are Tabl e=arr ay[Rows] [Col s]

Added optional initializer syntax for arrays.
#decl are MyArray=array[2][3]{{1, 2, 3},{4,5,6}}

Subscripts start at 0. Anything that can be declared may be in an array. Arrays are initialized as null. You must
later fill each element with values.

Added float functions for arrays. Given #decl are MyArray = array[4][5] then
di nensi ons(MyArray) is2and di mensi on_si ze(MyArr ay, 2) isb5.

1.6.4 File I/0O and other Directives

Added #f open, #f cl ose, #r ead, and #wr i t e directives for user text files.
Added #undef identifier directive. Un-declares previously declared identifier. Works on locals or globals.

Added requirement that any directive which can end in a float or expression must be terminated by a semi-colon.
Specifically this means any #decl ar e or #1 ocal of float, vector or color or the #ver si on directive.

1.6.5 Additional New Features

Added Bezier splines to | at he and pri sm The spline is made of segments having four points each. Thus there are
always four times the number of segments in a prism or lathe. A four point Bezier spline uses 3rd order Bernstein
blending functions which are sufficient for smooth curves.

May 1999 POV-Ray 3.1g User Documentation Page 14

Added float constant cl ock_del t a returns time between frames.

May 1999 POV-Ray 3.1g User Documentation Page 15

2 Beginning Tutorial

The beginning tutorial explains step by step how to use POV-Ray's scene description language to create own your
scenes. The use of almost every feature of POV-Ray's language is explained in detail. We will learn basic things like
placing cameras and light sources. We will also learn how to create a large variety of objects and how to assign
different textures to them. The more sophisticated features like radiosity, interior, media and atmospheric effects
will be explained in detail.

2.1 Our First Image

We will create the scene file for a simple picture. Since ray-tracers thrive on spheres, that is what we will render
first.

2.1.1 Understanding POV-Ray's Coordinate System

First, we have to tell POV-Ray where our camera is and where it is looking. To do this, we use 3D coordinates. The
usual coordinate system for POV-Ray has the positive y-axis pointing up, the positive x-axis pointing to the right,
and the positive z-axis pointing into the screen as follows:

y
A

The left-handed coordinate system (the z-axis is pointing away)

This kind of coordinate system is called a left-handed coordinate system. If we use our left hand's fingers we can
easily see why it is called left-handed. We just point our thumb in the direction of the positive x-axis (to the right),

May 1999 POV-Ray 3.1g User Documentation Page 16

the index finger in the direction of the positive y-axis (straight up) and the middle finger in the positive z-axis
direction (forward). We can only do this with our left hand. If we had used our right hand we would not have been
able to point the middle finger in the correct direction.

The left hand can also be used to determine rotation directions. To do this we must perform the famous "Computer
Graphics Aerobics" exercise. We hold up our left hand and point our thumb in the positive direction of the axis of
rotation. Our fingers will curl in the positive direction of rotation. Similarly if we point our thumb in the negative
direction of the axis our fingers will curl in the negative direction of rotation.

""Computer Graphics Aerobics' to determine the rotation direction.

In the above illustration, the left hand is curling around the x-axis. The thumb points in the positive x direction and
the fingers curl over in the positive rotation direction.

If we want to use a right-handed system, as some CAD systems and modelers do, the r i ght vector in the camera
specification needs to be changed. See the detailed description in "Handedness". In a right-handed system we use
our right hand for the "Aerobics".

There is some controversy over whether POV-Ray's method of doing a right-handed system is really proper. To
avoid problems we stick with the left-handed system which is not in dispute.

2.1.2 Adding Standard Include Files

Using our personal favorite text editor, we create a file called deno. pov. Note some versions of POV-Ray come
with their own built-in text editor which may be easier to use. We then type in the following text. The input is case
sensitive, so we have to be sure to get capital and lowercase letters correct.

#i nclude "col ors.inc" /1 The include files contain
#i ncl ude "stones.inc" /1 pre-defined scene el enents

The first include statement reads in definitions for various useful colors. The second include statement reads in a
collection of stone textures.

POV-Ray comes with many standard include files. Others of interest are:

#i nclude "textures.inc" /1 pre-defined scene el enents
#i ncl ude "shapes.inc"
#i ncl ude "gl ass.inc"
#i nclude "netal s.inc"
#i ncl ude "woods. i nc"

May 1999 POV-Ray 3.1g User Documentation Page 17

They read pre-defined textures, shapes, glass, metal, and wood textures. It is a good idea to have a look through
them to see a few of the many possible shapes and textures available.

We should only include files we really need in our scene. Some of the include files coming with POV-Ray are quite
large and we should better save the parsing time and memory if we don't need them. In the following examples we
will only use the col or s. i nc,and st ones. i nc include files.

We may have as many include files as needed in a scene file. Include files may themselves contain include files, but
we are limited to declaring includes nested only ten levels deep.

Filenames specified in the include statements will be searched for in the current directory first. If it fails to find your
.Inc files in the current directory, POV-Ray searches any "library paths" that you have specified. Library paths are
options set by the +L command-line switch or Li br ary_Pat h option. See the chapter "Setting POV-Ray
Options" for more information on library paths.

Because it is more useful to keep include files in a separate directory, standard installation of POV-Ray place these
files in the \povray3\include directory. If you get an error message saying that POV-Ray cannot open
"col ors. i nc" or other include files, make sure that you specify the library path properly.

2.1.3 Adding a Camera

The caner a statement describes where and how the camera sees the scene. It gives x-, y- and z-coordinates to
indicate the position of the camera and what part of the scene it is pointing at. We describe the coordinates using a
three-part vector. A vector is specified by putting three numeric values between a pair of angle brackets and
separating the values with commas.

We add the following camera statement to the scene.

camera ({
| ocation <0, 2, -3>
| ook_at <0, 1, 2>
}

Briefly, | ocati on <O, 2, - 3> places the camera up two units and back three units from the center of the ray-
tracing universe which is at <0,0,0>. By default +z is into the screen and -z is back out of the screen.

Alsol ook_at <0, 1, 2> rotates the camera to point at the coordinates <0,1,2>. A point 1 unit up from the origin
and 2 units away from the origin. This makes it 5 units in front of and 1 unit lower than the camera. The | ook _at
point should be the center of attention of our image.

2.1.4 Describing an Object

Now that the camera is set up to record the scene, let's place a yellow sphere into the scene. We add the following to
our scene file:

sphere {
<0, 1, 2>, 2
texture {
pi gment { color Yellow}
}
}

The first vector specifies the center of the sphere. In this example the x coordinate is zero so it is centered left and
right. It is also at y=1 or one unit up from the origin. The z coordinate is 2 which is five units in front of the camera,
which is at z=-3. After the center vector is a comma followed by the radius which in this case is two units. Since the
radius is half the width of a sphere, the sphere is four units wide.

May 1999 POV-Ray 3.1g User Documentation Page 18

2.1.5 Adding Texture to an Object

After we have defined the location and size of the sphere, we need to describe the appearance of the surface. The

t ext ur e statement specifies these parameters. Texture blocks describe the color, bumpiness and finish properties
of an object. In this example we will specify the color only. This is the minimum we must do. All other texture
options except color will use default values.

The color we define is the way we want an object to look if fully illuminated. If we were painting a picture of a
sphere we would use dark shades of a color to indicate the shadowed side and bright shades on the illuminated side.
However ray-tracing takes care of that for you. We only need to pick the basic color inherent in the object and POV-
Ray brightens or darkens it depending on the lighting in the scene. Because we are defining the basic color the
object actually has rather than how it looks the parameter is called pi gnent .

Many types of color patterns are available for use in a pigment statement. The keyword col or specifies that the
whole object is to be one solid color rather than some pattern of colors. We can use one of the color identifiers
previously defined in the standard include file col or s. i nc.

If no standard color is available for our needs, we may define our own color by using the color keyword followed by
red, gr een, and bl ue keywords specifying the amount of red, green and blue to be mixed. For example a nice
shade of pink can be specified by:

color red 1.0 green 0.8 blue 0.8

The values after each keyword should be in the range from 0.0 to 1.0. Any of the three components not specified
will default to 0. A shortcut notation may also be used. The following produces the same shade of pink:

color rgh <1.0, 0.8, 0.8>

Colors are explained in more detail in section "Specifying Colors".

2.1.6 Defining a Light Source

One more detail is needed for our scene. We need a light source. Until we create one, there is no light in this virtual
world. Thus we add the line

Thus we add the line
light_source { <2, 4, -3> color Wite}
to the scene file to get our first complete POV-Ray scene file as shown below.

#i ncl ude "col ors.inc"
background { col or Cyan }
camera f{

| ocation <0, 2, -3>

| ook_at <0, 1, 2>
}
sphere {

<0, 1, 2>, 2

texture {

pi gment { color Yellow}
}

}
light _source { <2, 4, -3> color Wite}

The vector inthe | i ght _sour ce statement specifies the location of the light as two units to our right, four units
above the origin and three units back from the origin. The light source is an invisible tiny point that emits light. It
has no physical shape, so no texture is needed.

That's it! We close the file and render a small picture of it using whatever methods you used for your particular
platform. If you specified a preview display it will appear on your screen. If you specified an output file (the

May 1999 POV-Ray 3.1g User Documentation Page 19

default is file output on), then POV-Ray also created a file. Note that if you do not have high color or true color
display hardware then the preview image may look poor but the full detail is written to the image file regardless of
the type of display.

The scene we just traced isn't quite state of the art but we will have to start with the basics before we soon get to
much more fascinating features and scenes.
2.2 Simple Shapes

So far we have just used the sphere shape. There are many other types of shapes that can be rendered by POV-Ray.
The following sections will describe how to use some of the more simple objects as a replacement for the sphere
used above.

2.2.1 Box Object

The box is one of the most common objects used. We try this example in place of the sphere:

box {
<-1, O, -1>, /] Near |ower left corner
<1, 0.5, 3> // Far upper right corner
texture {
T _Stone25 /1 Pre-defined fromstones.inc
scale 4 /1 Scale by the same ampunt in all
/1 directions
}
rotate y*20 /1 Equivalent to "rotate <O, 20, 0>"
}

In the example we can see that a box is defined by specifying the 3D coordinates of its opposite corners. The first
vector is generally the minimum x-, y- and z-coordinates and the 2nd vector should be the maximum x-, y- and z-
values however any two opposite corners may be used. Box objects can only be defined parallel to the axes of the
world coordinate system. We can later rotate them to any angle. Note that we can perform simple math on values

and vectors. In the rotate parameter we multiplied the vector identifier y by 20. This is the same as <0,1,0>*20 or
<0,20,0>.

2.2.2 Cone Object

Here's another example showing how to use a cone:

cone {
<0, 1, 0>, 0.3 !/l Center and radius of one end
<1, 2, 3> 1.0 /1 Center and radius of other end
texture { T _Stone25 scale 4 }

}

The cone shape is defined by the center and radius of each end. In this example one end is at location <0,1,0> and
has a radius of 0.3 while the other end is centered at <1,2,3> with a radius of 1. If we want the cone to come to a
sharp point we must use radius=0. The solid end caps are parallel to each other and perpendicular to the cone axis. If
we want an open cone with no end caps we have to add the keyword open after the 2nd radius like this:

cone {
<0, 1, 0>, 0.3 !/l Center and radius of one end
<1, 2, 3>, 1.0 /] Center and radius of other end
open /'l Renopves end caps
texture { T _Stone25 scale 4 }

May 1999 POV-Ray 3.1g User Documentation Page 20

2.2.3 Cylinder Object

We may also define acyl i nder like this:

cylinder {
<0, 1, 0>, /1 Center of one end
<1, 2, 3>, /1 Center of other end
0.5 /1 Radi us
open /'l Renove end caps
texture { T_Stone25 scale 4 }

}

2.2.4 Plane Object

Let's try out a computer graphics standard "The Checkered Floor". We add the following object to the first version
of the deno. pov file, the one including the sphere.
plane { <0, 1, 0>, -1
pi gment {
checker col or Red, color Bl ue
}

}

The object defined here is an infinite plane. The vector <0,1,0> is the surface normal of the plane (i.e. if we were
standing on the surface, the normal points straight up). The number afterward is the distance that the plane is
displaced along the normal from the origin -- in this case, the floor is placed at y=-1 so that the sphere at y=1,
radius=2, is resting on it.

We note that even though there is no t ext ur e statement there is an implied texture here. We might find that
continually typing statements that are nested like t ext ur e { pi gment } can get to be tiresome so POV-Ray let's
us leave out the t ext ur e statement under many circumstances. In general we only need the texture block
surrounding a texture identifier (like the T_St one25 example above), or when creating layered textures (which are
covered later).

This pigment uses the checker color pattern and specifies that the two colors red and blue should be used.

Because the vectors <1,0,0>, <0,1,0> and <0,0,1> are used frequently, POV-Ray has three built-in vector identifiers
X,y and z respectively that can be used as a shorthand. Thus the plane could be defined as:

plane { y, -1
pigment { ... }

Note that we do not use angle brackets around vector identifiers.

Looking at the floor, we notice that the ball casts a shadow on the floor. Shadows are calculated very accurately by
the ray-tracer, which creates precise, sharp shadows. In the real world, penumbral or "soft" shadows are often seen.
Later we will learn how to use extended light sources to soften the shadows.

2.3 CSG Objects

Constructive Solid Geometry, or CSG, is a powerful tool to combine primitive objects to create more complex
objects as shown in the following sections.

2.3.1 Whatis CSG?

CSG stands for Constructive Solid Geometry. POV-Ray allows us to construct complex solids by combining
primitive shapes in four different ways. In the uni on statement, two or more shapes are added together. With the

May 1999 POV-Ray 3.1g User Documentation Page 21

i nt ersect i on statement, two or more shapes are combined to make a new shape that consists of the area
common to both shapes. The di f f er ence statement, an initial shape has all subsequent shapes subtracted from it.
And last not least mer ge, which is like a union where the surfaces inside the union are removed (useful in
transparent CSG objects). We will deal with each of these in detail in the next few sections.

CSG objects can be extremely complex. They can be deeply nested. In other words there can be unions of
differences or intersections of merges or differences of intersections or even unions of intersections of differences of
merges... ad infinitum. CSG objects are (almost always) finite objects and thus respond to auto-bounding and can be

transformed like any other POV primitive shape.

2.3.2 CSG Union

Let's try making a simple union. Create a file called csgdeno. pov and edit it as follows:

#i ncl ude "col ors.inc"
camera f{
| ocation <0, 1, -10>
| ook_at O
angl e 36

}
light _source { <500, 500, -1000> Wite }

plane { y, -1.5
pi gment { checker Green Wite }

Let's add two spheres each translated 0.5 units along the x-axis in each direction. We color one blue and the other
red.
sphere { <0, 0, 0>, 1
pi gment { Blue }
translate -0.5*x

}
sphere { <0, 0, 0>, 1
pigment { Red }
translate 0.5*x
}
We trace this file and note the results. Now we place a union block around the two spheres. This will create a single
CSG union out of the two objects.
uni on{
sphere { <0, 0, 0>, 1
pi gment { Blue }
translate -0.5*x

}
sphere { <0, 0, 0>, 1
pi gment { Red }
translate 0.5*x
}
}
We trace the file again. The union will appear no different from what each sphere looked like on its own, but now
we can give the entire union a single texture and transform it as a whole. Let's do that now.

uni on{
sphere { <0, 0, 0>, 1
translate -0.5*x
}

sphere { <0, 0, 0>, 1
translate 0.5*x

May 1999 POV-Ray 3.1g User Documentation Page 22

}

pi gment { Red }
scale <1, .25, 1>
rotate <30, 0, 45>

}

We trace the file again. As we can see, the object has changed dramatically. We experiment with different values of
scale and rotate and try some different textures.

There are many advantages of assigning only one texture to a CSG object instead of assigning the texture to each
individual component. First, it is much easier to use one texture if our CSG object has a lot of components because
changing the objects appearance involves changing only one single texture. Second, the file parses faster because the
texture has to be parsed only once. This may be a great factor when doing large scenes or animations. Third, using
only one texture saves memory because the texture is only stored once and referenced by all components of the CSG
object. Assigning the texture to all n components means that it is stored n times.

2.3.3 CSG Intersection

Now let's use these same spheres to illustrate the next kind of CSG object, the i nt er sect i on. We change the
word uni on toi nt er secti on and delete the scal e and r ot at e statements:

i ntersection {
sphere { <0, 0, 0>, 1
translate -0.5*x

}
sphere { <0, 0, 0>, 1
transl ate 0.5*x

}
pi gment { Red }
}

We trace the file and will see a lens-shaped object instead of the two spheres. This is because an intersection consists
of the area shared by both shapes, in this case the lens-shaped area where the two spheres overlap. We like this lens-
shaped object so we will use it to demonstrate differences.

2.3.4 CSG Difference

We rotate the lens-shaped intersection about the y-axis so that the broad side is facing the camera.
i ntersection{
sphere { <0, 0, 0>, 1
translate -0.5*x

}
sphere { <0, 0, 0>, 1
transl ate 0.5*x

}
pi gment { Red }
rotate 90*y

}

Let's create a cylinder and stick it right in the middle of the lens.

cylinder { <0, 0, -1> <0, 0, 1>, .35
pi gment { Blue }

We render the scene to see the position of the cylinder. We will place a di f f er ence block around both the lens-
shaped intersection and the cylinder like this:

di fference {

May 1999 POV-Ray 3.1g User Documentation Page 23

i ntersection {
sphere { <0, 0, 0>, 1
translate -0.5%x

}

sphere { <0, 0, 0>, 1
translate 0.5*x

}

pi gment { Red }

rotate 90*y

}
cylinder { <0, 0, -1> <0, 0, 1> .35
pi gment { Blue }

}

We render the file again and see the lens-shaped intersection with a neat hole in the middle of it where the cylinder
was. The cylinder has been subt r act ed from the intersection. Note that the pigment of the cylinder causes the
surface of the hole to be colored blue. If we eliminate this pigment the surface of the hole will be red.

OK, let's get a little wilder now. Let's declare our perforated lens object to give it a name. Let's also eliminate all
textures in the declared object because we will want them to be in the final union instead.

#declare Lens_Wth_Hole = difference {
i ntersection {
sphere { <0, 0, 0>, 1
translate -0.5*x
}
sphere { <0, 0, 0>, 1
translate 0.5*x

}
rotate 90*y

}
cylinder { <0, 0, -1> <0, 0, 1>, .35}
}

Let's use a union to build a complex shape composed of copies of this object.

uni on {
object { Lens_Wth_Hole translate <-.65, .65, 0>}
object { Lens Wth Hole translate <.65, .65, 0>}
object { Lens Wth Hole translate <-.65, -.65, 0>}
object { Lens Wth Hole translate <.65, -.65, 0>}
pi gment { Red }

}

We render the scene. An interesting object to be sure. But let's try something more. Let's make it a partially-
transparent object by adding some filter to the pigment block.

uni on {
object { Lens_Wth_Hole translate <-.65, .65, 0>}
object { Lens_ Wth_Hole translate <.65, .65, 0>}
object { Lens Wth Hole translate <-.65, -.65, 0>}
object { Lens Wth Hole translate <.65, -.65, 0>}
pigment { Red filter .5}

}

We render the file again. This looks pretty good... only... we can see parts of each of the lens objects inside the
union! This is not good.

May 1999 POV-Ray 3.1g User Documentation Page 24

2.3.5 CSG Merge

This brings us to the fourth kind of CSG object, the mer ge. Merges are the same as unions, but the geometry of the
objects in the CSG that is inside the merge is not traced. This should eliminate the problem with our object. Let's try
it.
nmer ge {
object { Lens_Wth_Hole translate <-.65, .65, 0>}
object { Lens_ Wth_Hole translate <.65, .65, 0>}
object { Lens_Wth_Hole translate <-.65, -.65, 0>}
object { Lens Wth Hole translate <.65, -.65, 0>}
pigment { Red filter .5}

}

Sure enough, it does!

2.3.6 CSG Pitfalls

There is a severe pitfall in the CSG code that we have to be aware of.

2.3.6.1 Coincidence Surfaces

POV-Ray uses inside/outside tests to determine the points at which a ray intersects a CSG object. A problem arises
when the surfaces of two different shapes coincide because there is no way (due to numerical problems) to tell
whether a point on the coincident surface belongs to one shape or the other.

Look at the following example where a cylinder is used to cut a hole in a larger box.
di fference {
box { -1, 1 pignent { Red } }
cylinder { -z, z, 0.5 pignent { Geen } }

Note that the vectors -1 and 1 in the box definition expand to <-1,-1,-1> and <1,1,1> respectively.

If we trace this object we see red speckles where the hole is supposed to be. This is caused by the coincident
surfaces of the cylinder and the box. One time the cylinder's surface is hit first by a viewing ray, resulting in the
correct rendering of the hole, and another time the box is hit first, leading to a wrong result where the hole vanishes
and red speckles appear.

This problem can be avoided by increasing the size of the cylinder to get rid of the coincidence surfaces. This is
done by:

di fference {

box { -1, 1 pignent { Red } }

cylinder { -1.001*z, 1.001*z, 0.5 pignent { Geen } }
}

In general we have to make the subtracted object a little bit larger in a CSG difference. We just have to look for
coincident surfaces and increase the subtracted object appropriately to get rid of those surfaces.

The same problem occurs in CSG intersections and is also avoided by scaling some of the involved objects.

2.4 Advanced Shapes

After we have gained some experience with the simpler shapes available in POV-Ray it is time to go on to the more
advanced, thrilling shapes.

May 1999 POV-Ray 3.1g User Documentation Page 25

We should be aware that the shapes described below are not trivial to understand. We needn't be worried though if
we do not know how to use them or how they work. We just try the examples and play with the features described in
the reference chapter. There is nothing better than learning by doing.

You may wish to skip to the chapter "Simple Texture Options" before proceeding with these advanced shapes.

2.4.1 Bicubic Patch Object

Bicubic or Bezier patches are useful surface representations because they allow an easy definition of surfaces using
only a few control points. The control points serve to determine the shape of the patch. Instead of defining the
vertices of triangles, we simply give the coordinates of the control points. A single patch has 16 control points, one
at each corner, and the rest positioned to divide the patch into smaller sections. For ray-tracing (or rendering) the
patches are approximated using triangles.

Bezier patches are almost always created using a third party modeler so for this tutorial, we will use nor ay (any
other modeler that supports Bezier patches and POV-Ray can also be used). We will use mor ay only to create the
patch itself, not the other elements of the scene.

Note that nor ay is not included with POV-Ray. It is a separate shareware program that currently only runs on MS-
Dos and Win95/NT but this tutorial assumes you are using the MS-Dos version. If you do not have nor ay or are
not on MS-Dos, you can still render the sample scene described below, even though you cannot see how nor ay
created it. Simply type in the bi cubi c_pat ch declaration listed below.

Bezier patches are actually very useful and, with a little practice, some pretty amazing things can be created with
them. For our first tutorial, let's make a sort of a teepee/tent shape using a single sheet patch.

First, we start nor ay and, from the main edit screen, we click on "CREATE". We Name our object Teepee. The
"CREATE BEZIER PATCH" dialogue box will appear. We have to make sure that "SHEET" is depressed. We click
on "OK, CREATE". At the bottom of the main edit screen, we click on "EXTENDED EDIT".

We hold the cursor over the "TOP" view and right click to make the pop-up menu appear. We click on
"MAXIMIZE". We [ALT]-drag to zoom in a little. We click on "MARK ALL", and under the transformation mode
box, "UFRM SCL". We drag the mouse to scale the patch until it is approximately four units wide. We click on
"TRANSLATE", and move the patch so that its center is over the origin. We right click "MINIMIZE" and
"UNMARK ALL".

We [SHIFT]-drag a box around the lower right control point to mark it. We [ALT]-zoom into the "FRONT" view so
that we can see the patch better. Inthe "FRONT" view, we "TRANSLATE" that point 10 units along the negative z-
axis (we note that in MORAY z is up). We "UNMARK ALL". We repeat this procedure for each of the other three
corner points. We make sure we remember to "UNMARK ALL" once each point has been translated. We should
have a shape that looks as though it is standing on four pointed legs. We "UNMARK ALL".

Working once again in the "TOP" view, we [SHIFT]-drag a box around the four center control points to mark them.
We right-click over the "TOP" view and "MAXIMIZE". We click on "UFRM SCL" and drag the mouse to scale the
four points close together. We [ALT]-drag to zoom closer and get them as close together as we can. We [ALT]-drag
to zoom out, right click and "MINIMIZE".

In the "FRONT" view, we "TRANSLATE" the marked points 10 units along the positive z-axis. We "UNMARK
ALL". The resulting shape is quite interesting, was simple to model, and could not be produced using CSG
primitives. Now let's use it in a scene.

We click on "DONE" to return to the main edit screen. We note that u_st eps and v_st eps are both set to 3 and
flatness is set to 0.01. We leave them alone for now. We click on "FILES" and then "SAVE SEL" (save selection).
We name our new file t eepeel. ndl . We press [F3] and open t eepeel. ndl . There is no need to save the
original file. When t eepeel is open, we create a quick "dummy" texture (nor ay will not allow us to export data

May 1999 POV-Ray 3.1g User Documentation Page 26

without a texture). We use white with default finish and name it TeePeeTex. We apply it to the object, save the
file and press [CTRL-F9]. nor ay will create two files: t eepeel. i nc and t eepeel. pov

We exit nor ay and copy t eepeel. i nc andt eepeel. pov into our working directory where we are doing
these tutorials. We create a new file called bezdeno. pov and edit it as follows:

#i ncl ude "col ors.inc"
canera ({
| ocation <0, .1, -60>
| ook_at O
angl e 40

background { color Gray25 } //to make the patch easier to see
light _source { <300, 300, -700> Wite }
plane { y, -12
texture {
pi gment {
checker
col or Green
col or Yell ow
}
}
}

Using a text editor, we create and declare a simple texture for our teepee object:

#decl are TeePeeTex = texture {
pi gment {
color rgh <1, 1, 1,>

}

finish {
anmbient .2
diffuse .6

}

}

We paste in the bezier patch data fromt eepeel. pov (the additional object keywords added by nor ay were
removed):

bi cubi c_patch {
type 1 flatness 0.0100 u_steps 3 v_steps 3,
<-5.174134, 5.528420, -13.211995>,
<-1.769023, 5.528420, 0.000000>,
<1. 636088, 5.528420, 0.000000>,
<5. 041199, 5.528420, -13.003932>,
<-5.174134, 1.862827, 0.000000>,
<0. 038471, 0.031270, 18.101474>,
<0. 036657, 0.031270, 18.101474>,
<5. 041199, 1.862827, 0.000000>,
<-5.174134, -1.802766, 0.000000>,
<0. 038471, 0.028792, 18.101474>,
<0. 036657, 0.028792, 18.101474>,
<5. 041199, -1.802766, 0.000000>,
<-5.174134, -5.468359, -13.070366>,
<-1.769023, -5.468359, 0.000000>,
<1. 636088, -5.468359, 0.000000>,
<4.974128, -5.468359, -12.801446>
texture {

TeePeeTex

May 1999 POV-Ray 3.1g User Documentation Page 27

}
rotate -90*x // to orient the object to LHC

rotate 25*y /1l to see the four "legs" better

}

We add the above rotations so that the patch is oriented to POV-Ray's left-handed coordinate system (remember the
patch was made in moray in a right handed coordinate system), so we can see all four legs. Rendering this at
200x150 -a we see pretty much what we expect, a white teepee over a green and yellow checkered plane. Let's take a
little closer look. We render it again, this time at 320x200.

Now we see that something is amiss. There appears to be sharp angling, almost like facing, especially near the top.
This is indeed a kind of facing and is due to the u_st eps and v_st eps parameters. Let's change these from 3 to 4
and see what happens.

That's much better, but it took a little longer to render. This is an unavoidable tradeoff. If we want even finer detail,
we must use a u_st eps and v_st eps value of 5 and set flatness to 0. But we must expect to use lots of memory
and an even longer tracing time.

Well, we can't just leave this scene without adding a few items just for interest. We declare the patch object and
scatter a few of them around the scene:

#decl are TeePee = bi cubi c_patch {
type 1 flatness 0.0100 u_steps 3 v_steps 3,
<-5.174134, 5.528420, -13.211995>,
<-1.769023, 5.528420, 0.000000>,
<1.636088, 5.528420, 0.000000>,
<5. 041199, 5.528420, -13.003932>,
<-5.174134, 1.862827, 0.000000>,
<0. 038471, 0.031270, 18.101474>,
<0. 036657, 0.031270, 18.101474>,
<5.041199, 1.862827, 0.000000>,
<-5.174134, -1.802766, 0.000000>,
<0. 038471, 0.028792, 18.101474>,
<0. 036657, 0.028792, 18.101474>,
<5.041199, -1.802766, 0.000000>,
<-5,.174134, -5.468359, -13.070366>,
<-1.769023, -5.468359, 0.000000>,
<1.636088, -5.468359, 0.000000>,
<4.974128, -5.468359, -12.801446>
texture {
TeePeeTex
}
rotate -90*x // to orient the object to LHC
rotate 25*y // to see the four "legs" better

}

obj ect { TeePee }

object { TeePee translate <8, 0, 8>}
object { TeePee translate <-9, 0, 9>}
object { TeePee translate <18, 0, 24>}
obj ect { TeePee translate <-18, 0, 24>}

That looks good. Let's do something about that boring gray background. We delete the background declaration and
replace it with:

pl ane { y, 500
texture {
pi gment { SkyBl ue }
finish { ambient 1 diffuse 0}
}

May 1999 POV-Ray 3.1g User Documentation Page 28

texture {
pi gment {
bozo
turbul ence .5
color_map {
[0 Wite]
[1 Wiite filter 1]
}
}
finish { anmbient 1 diffuse 0 }
scal e <1000, 250, 250>
rotate <5, 45, 0>

}
}
This adds a pleasing cirrus-cloud filled sky. Now, let's change the checkered plane to rippled sand dunes:
pl ane {y,-12
texture {
pi gment {
color <.85, .5, .15>
}
finish {
anbi ent .25
diffuse .6
crand .5
}
nor mal {
ripples .35

turbul ence .25
frequency 5

scal e 10
transl ate 50*x
}
}

We render this. Not bad! Let's just add one more element. Let's place a golden egg under each of the teepees. And
since this is a bezier patch tutorial, let's make the eggs out of bezier patches.

We return to nor ay and create another bezier patch. We name it Egg1 and select "CYLINDRICAL 2 - PATCH"
from the "CREATE BEZIER PATCH" dialogue box. We click on "EXTENDED EDIT". We "MARK ALL" and
rotate the patch so that the cylinder lays on its side. We "UNMARK ALL". In the "FRONT" view, we [SHIFT]-drag
a box around the four points on the right end to mark them. In the "SIDE" view, we right click and "MAXIMIZE".
We [ALT]-drag to zoom in a little closer. We "UFRM SCL" the points together as close as possible. We zoom in
closer to get them nice and tight. We zoom out, right click and "MINIMIZE".

We click on "TRANSLATE" and drag the points to the left so that they are aligned on the z-axis with the next group
of four points. This should create a blunt end to the patch. We repeat this procedure for the other end. We
"UNMARK ALL".

In the "FRONT" view, the control grid should be a rectangle now and the patch should be an ellipsoid. We [SHIFT]-
drag a box around the upper right corner of the control grid to mark those points. We then [SHIFT]-drag a box
around the lower right corner to mark those points as well. In the "SIDE" view, we "UFRM SCL" the points apart a
little to make that end of the egg a little wider than the other. We "UNMARK ALL".

May 1999 POV-Ray 3.1g User Documentation Page 29

The egg may need a little proportional adjustment. We should be able to "MARK ALL" and "LOCAL SCL" in the
three views until we get it to look like an egg. When we are satisfied that it does, we "UNMARK ALL" and click on

done. Learning from our teepee object, we now go ahead and change u_st eps and v_st eps to 4.

We create a dummy texture, white with default finish, name it EggTex and apply it to the egg. From the FILES
menu, we "SAVE SEL" to filename eggl. mdl . We load this file and export ([CTRL F9]). We exit nor ay and

copy the fileseggl. i nc and eggl. pov into our working directory.

Back in bezdeno. pov, we create a nice, shiny gold texture:

#decl are EggTex = texture {
pi gment { BrightGold }

finish {
anbient .1
diffuse .4

specul ar 1
roughness 0. 001
reflection .5
netallic

}
}

And while we're at it, let's dandy up our TeePeeTex texture:

#decl are TeePeeTex = texture {
pigment { Silver }

finish {
anbient .1
di ffuse .4

specul ar 1
roughness 0. 001
reflection .5
netallic

}
}

Now we paste in our egg patch data and declare our egg:

#declare Egg = union { // Eggl
bi cubi c_patch {

type 1 flatness 0.0100 u_steps 4 v_steps 4,
<2.023314, 0.000000, 4.355987>,

<2.023314, -0.000726, 4.355987>,

<2.023312, -0.000726, 4.356867>,

<2.023312, 0.000000, 4.356867>,

<2.032037, 0.000000, 2.734598>,

<2.032037, -1.758562, 2.734598>,

<2.027431, -1.758562, 6.141971>,

<2.027431, 0.000000, 6.141971>,
<-1. 045672, 0.000000, 3.281572>,
<-1.045672, -1.758562, 3.281572>,
<-1.050279, -1.758562, 5.414183>,
<-1.050279, 0.000000, 5.414183>,
<-1. 044333, 0.000000, 4.341816>,
<-1. 044333, -0.002947, 4.341816>,
<-1.044341, -0.002947, 4.345389>,
<-1.044341, 0.000000, 4.345389>

}
bi cubi c_patch {

May 1999 POV-Ray 3.1g User Documentation

Page 30

type 1 flatness 0.0100 u_steps 4 v_steps 4,

<2.023312, 0.000000, 4.356867>,
<2.023312, 0.000726, 4.356867>,
<2.023314, 0.000726, 4.355987>,
<2.023314, 0.000000, 4.355987>,
<2.027431, 0.000000, 6.141971>,
<2.027431, 1.758562, 6.141971>,
<2.032037, 1.758562, 2.734598>,
<2.032037, 0.000000, 2.734598>,
<-1.050279, 0.000000, 5.414183>,
<-1.050279, 1.758562, 5.414183>,
<-1.045672, 1.758562, 3.281572>,
<-1. 045672, 0.000000, 3.281572>,
<-1.044341, 0.000000, 4.345389>,
<-1.044341, 0.002947, 4.345389>,
<-1.044333, 0.002947, 4.341816>,
<-1. 044333, 0.000000, 4.341816>

}
texture { EggTex }

translate <0.5, 0, -5> // centers the egg around the origin
translate -9.8*y /1 places the egg on the ground

}

We now place a copy of the egg under each teepee. This should require only the x- and z-coordinates of each teepee
to be changed:

object { Egg }

object { Egg translate <8, 0, 8>}
object { Egg translate <-9, 0, 9>}
object { Egg translate <18, 0, 24>}
object { Egg translate <-18, 0, 24>}

Scene build with different Bezier patches.

We render this at low resolution such as 320x240. Everything looks good so we run it again at 640x480. Now we
see that there is still some facing near the top of the teepees and on the eggs as well. The only solution is to raise
u_st eps and v_st eps from 4 to 5 and set flatness to 0 for all our bezier objects. We make the changes and
render it again at 640x480. The facets are gone.

May 1999 POV-Ray 3.1g User Documentation Page 31

2.4.2 Blob Object

Blobs are described as spheres and cylinders covered with "goo" which stretches to smoothly join them (see section
"Blob"). Ideal for modeling atoms and molecules, blobs are also powerful tools for creating many smooth flowing
"organic” shapes.

A slightly more mathematical way of describing a blob would be to say that it is one object made up of two or more
component pieces. Each piece is really an invisible field of force which starts out at a particular strength and falls off
smoothly to zero at a given radius. Where ever these components overlap in space, their field strength gets added
together (and yes, we can have negative strength which gets subtracted out of the total as well). We could have just
one component in a blob, but except for seeing what it looks like there is little point, since the real beauty of blobs is
the way the components interact with one another.

Let us take a simple example blob to start. Now, in fact there are a couple different types of components but we will
look at them a little later. For the sake of a simple first example, let us just talk about spherical components. Here is
a sample POV-Ray code showing a basic camera, light, and a simple two component blob (this scene is called

bl obdemL. pov):

#i nclude "col ors.inc"
backgr ound{ Wi t e}
camera f{
angle 15
| ocation <0, 2,-10>
| ook _at <0, 0, 0>
}
light source { <10, 20, -10> color Wiite }
bl ob {
t hreshol d . 65
sphere { <.5,0,0>, .8, 1 pigment {Blue} }
sphere { <-.5,0,0>,.8, 1 pigment {Pink} }
finish { phong 1}
}

A simple, two-part blob.

The threshold is simply the overall strength value at which the blob becomes visible. Any points within the blob
where the strength matches the threshold exactly form the surface of the blob shape. Those less than the threshold
are outside and those greater than are inside the blob.

We note that the spherical component looks a lot like a simple sphere object. We have the sphere keyword, the
vector representing the location of the center of the sphere and the float representing the radius of the sphere. But

May 1999 POV-Ray 3.1g User Documentation Page 32

what is that last float value? That is the individual strength of that component. In a spherical component, that is how
strong the component's field is at the center of the sphere. It will fall off in a linear progression until it reaches
exactly zero at the radius of the sphere.

Before we render this test image, we note that we have given each component a different pigment. POV-Ray allows
blob components to be given separate textures. We have done this here to make it clearer which parts of the blob are
which. We can also texture the whole blob as one, like the finish statement at the end, which applies to all
components since it appears at the end, outside of all the components. We render the scene and get a basic kissing
spheres type blob.

The image we see shows the spheres on either side, but they are smoothly joined by that bridge section in the center.
This bridge represents where the two fields overlap, and therefore stay above the threshold for longer than elsewhere
in the blob. If that is not totally clear, we add the following two objects to our scene and re-render (see file
bl obden®. pov). We note that these are meant to be entered as separate sphere objects, not more components in
the blob.
sphere { <.5,0,0>, .8
pigment { Yellow transmt .75 }

sphere { <-.5,0,0>, .8
pigment { Green transnmt .75 }
}

The spherical components made visible.

Now the secrets of the kissing spheres are laid bare. These semi-transparent spheres show where the components of
the blob actually are. If we have not worked with blobs before, we might be surprised to see that the spheres we just
added extend way farther out than the spheres that actually show up on the blobs. That of course is because our
spheres have been assigned a starting strength of one, which gradually fades to zero as we move away from the
sphere's center. When the strength drops below the threshold (in this case 0.65) the rest of the sphere becomes part
of the outside of the blob and therefore is not visible.

See the part where the two transparent spheres overlap? We note that it exactly corresponds to the bridge between
the two spheres. That is the region where the two components are both contributing to the overall strength of the
blob at that point. That is why the bridge appears: that region has a high enough strength to stay over the threshold,
due to the fact that the combined strength of two spherical components is overlapping there.

May 1999 POV-Ray 3.1g User Documentation Page 33

2.4.2.1 Component Types and Other New Features

The shape shown so far is interesting, but limited. POV-Ray has a few extra tricks that extend its range of usefulness
however. For example, as we have seen, we can assign individual textures to blob components, we can also apply
individual transformations (translate, rotate and scale) to stretch, twist, and squash pieces of the blob as we require.
And perhaps most interestingly, the blob code has been extended to allow cylindrical components.

Before we move on to cylinders, it should perhaps be mentioned that the old style of components used in previous
versions of POV-Ray still work. Back then, all components were spheres, so it was not necessary to say sphere or
cylinder. An old style component had the form:

conmponent Strength, Radius, <Center>

This has the same effect as a spherical component, just as we already saw above. This is only useful for backwards
compatibility. If we already have POV-Ray files with blobs from earlier versions, this is when we would need to
recognize these components. We note that the old style components did not put braces around the strength, radius
and center, and of course, we cannot independently transform or texture them. Therefore if we are modifying an
older work into a new version, it may arguably be of benefit to convert old style components into spherical
components anyway.

Now for something new and different: cylindrical components. It could be argued that all we ever needed to do to
make a roughly cylindrical portion of a blob was string a line of spherical components together along a straight line.
Which is fine, if we like having extra to type, and also assuming that the cylinder was oriented along an axis. If not,
we would have to work out the mathematical position of each component to keep it is a straight line. But no more!
Cylindrical components have arrived.

We replace the blob in our last example with the following and re-render. We can get rid of the transparent spheres
too, by the way.

bl ob {
t hreshol d . 65
cylinder { <-.75,-.75,0>, <.75,.75,0>, .5, 11}
pi gment { Blue }
finish { phong 1 }
}

We only have one component so that we can see the basic shape of the cylindrical component. It is not quite a true
cylinder - more of a sausage shape, being a cylinder capped by two hem-spheres. We think of it as if it were an array
of spherical components all closely strung along a straight line.

As for the component declaration itself: simple, logical, exactly as we would expect it to look (assuming we have
been awake so far): it looks pretty much like the declaration of a cylinder object, with vectors specifying the two
endpoints and a float giving the radius of the cylinder. The last float, of course, is the strength of the component. Just
as with spherical components, the strength will determine the nature and degree of this component's interaction with
its fellow components. In fact, next let us give this fellow something to interact with, shall we?

2.4.2.2 Complex Blob Constructs and Negative Strength

Beginning a new POV-Ray file called bl obdenB. pov, we enter this somewhat more complex example:

#i ncl ude "col ors.inc"
backgr ound{ Wi t e}
canera ({

angle 20

| ocati on<0, 2, - 10>

| ook_at <0, 0, 0>
}
[ight_source { <10, 20, -10> color White }
bl ob {

May 1999 POV-Ray 3.1g User Documentation Page 34

t hreshol d .65

sphe
sphe
sphe
sphe
sphe
sphe
cyli
cyli
cyli
cyli
cyli
cyli
cyli
cyli
cyli
cyli

re { <
re { <
re { <
re { <
re { <
re { <
nder {
nder {
nder {
nder {
nder {
nder {
nder {
nder {
nder {
nder {

+.
<
<
<

<

ANNNANNNAN

<.

19,

.23,-.32,0>,.43, 1 scale <1.95,1.05,.8>} /] pal m
.12,-.41,0>,.43, 1 scale <1.95,1.075,.8>} //palm
.23,-.63,0>, .45, .75 scale <1.78, 1.3,1>} //mdhand
.19,-.63,0>, .45, .75 scale <1.78, 1.3,1>} //mdhand
.22,-.73,0>, .45, .85 scale <1.4, 1.25,1> 1} //hee
-.73,0>, .45, .85 scale <1.4, 1.25,1> 1} //hee
-.65,-.28,0>, <-.65,.28,-.05>, .26, 1} /11 ower pinky

-.65,.28,-.05> <-.65, .68,-.2> .26, 1} //upper pinky
-.3,-.28,0>, <-.3,.44,-.05>, .26, 1} /1l ower ring

-.3,.44,-.05>, <-.3, .9,-.2>, .26,
.05,-.28,0>, <.05, .49,-.05> .26,

1} /l'upper ring
1} /11 ower mddle

.05,.49,-.05> <.05 .95-.2> .26, 1} [upper mddle
.4,-.4,0> <.4, .512, -.05> .26, 1} /1l ower index
.4,.512,-.05>, <.4, .85, -.2> .26, 1} /I upper i ndex
.41, -.95,0> <.85, -.68, -.05> .25, 1} [//lower thunb

pi gment { Flesh }

85,-.68,-.05> <1.2, -.4, -.2> .25, 1} [//upper thunb

A hand made with blobs.

As we can guess from the comments, we are building a hand here. After we render this image, we can see there are a
few problems with it. The palm and heel of the hand would look more realistic if we used a couple dozen smaller
components rather than the half dozen larger ones we have used, and each finger should have three segments instead
of two, but for the sake of a simplified demonstration, we can overlook these points. But there is one thing we really
need to address here: This poor fellow appears to have horrible painful swelling of the joints!

A review of what we know of blobs will quickly reveal what went wrong. The joints are places where the blob
components overlap, therefore the combined strength of both components at that point causes the surface to extend
further out, since it stays over the threshold longer. To fix this, what we need are components corresponding to the
overlap region which have a negative strength to counteract part of the combined field strength. We add the
following components to our blob (see file bl obdemd. pov).

sphere
sphere
sphere
sphere
sphere
sphere
sphere

May 1999

lotn Xate Nate N W W Wo
N
1

<-.65,.28,-.05> .26, -1} //counteract
<-.65,-.28,0> .26, -1} /'l count er act

.44,-.05>, .26, -1} [//counteract
-.28,0>, .26, -1} /] count er act
.49,-.05>, .26, -1} [//counteract
-.28,0>, .26, -1} /'l count er act
512,-.05>, .26, -1} //counteract

POV-Ray 3.1g User Documentation

pi nky knuckl e bul ge
pi nky pal m bul ge
ring knuckl e bul ge
ring pal m bul ge

m ddl e knuckl e bul ge
m ddl e pal m bul ge

i ndex knuckl e bul ge

Page 35

sphere { <.4,-.4,0> .26, -1} /l counteract index pal m bul ge
sphere { <.85,-.68,-.05> .25, -1} //counteract thunmb knuckl e bul ge
sphere { <.41,-.7,0>, .25, -.89 } // counteract thunb heel bul ge

The hand without the swollen joints.

Much better! The negative strength of the spherical components counteracts approximately half of the field strength
at the points where to components overlap, so the ugly, unrealistic (and painful looking) bulging is cut out making
our hand considerably improved. While we could probably make a yet more realistic hand with a couple dozen
additional components, what we get this time is a considerable improvement. Any by now, we have enough basic
knowledge of blob mechanics to make a wide array of smooth, flowing organic shapes!

2.4.3 Height Field Object

Ahei ght _fi el disan object that has a surface that is determined by the color value or palette index number of
an image designed for that purpose. With height fields, realistic mountains and other types of terrain can easily be
made. First, we need an image from which to create the height field. It just so happens that POV-Ray is ideal for
creating such an image.

We make a new file called i mage. pov and edit it to contain the following:

#i ncl ude "col ors.inc"

gl obal _settings {
assuned_gamma 2.2
hf _gray_16

}

The hf _gr ay_16 keyword causes the output to be in a special 16 bit grayscale that is perfect for generating height
fields. The normal 8 bit output will lead to less smooth surfaces.

Now we create a camera positioned so that it points directly down the z-axis at the origin.

canera ({
| ocation <0, 0, -10>
| ook_at O

}

We then create a plane positioned like a wall at z=0. This plane will completely fill the screen. It will be colored
with white and gray wrinkles.

plane { z, 10
pi gment {

May 1999 POV-Ray 3.1g User Documentation Page 36

wri nkl es
color _map {
[0 0.3*White]
[1 Wite]
}
}
}

Finally, create a light source.
light source { <0, 20, -100> color Wiite }

We render this scene at 640x480 +A0. 1 +FT. We will get an image that will produce an excellent height field. We
create a new file called hf denp. pov and edit it as follows:

#i ncl ude "col ors.inc"
We add a camera that is two units above the origin and ten units back ...

caner af
| ocation <0, 2, -10>
| ook_at O
angle 30

}
... and a light source.
i ght _source{ <1000, 1000, - 1000> Wite }
Now we add the height field. In the following syntax, a Targa image file is specified, the height field is smoothed, it

is given a simple white pigment, it is translated to center it around the origin and it is scaled so that it resembles
mountains and fills the screen.

hei ght _field {
tga "inage.tga"

snoot h
pigment { Wite }
translate <-.5, -.5, -.5>

scal e <17, 1.75, 17>
}

We save the file and render it at 320x240 - A. Later, when we are satisfied that the height field is the way we want it,
we render it at a higher resolution with anti-aliasing.

A height field created completely with POV-Ray.

May 1999 POV-Ray 3.1g User Documentation Page 37

Wow! The Himalayas have come to our computer screen!

2.4.4 Lathe Object

In the real world, | at he refers to a process of making patterned rounded shapes by spinning the source material in
place and carving pieces out as it turns. The results can be elaborate, smoothly rounded, elegant looking artifacts
such as table legs, pottery, etc. In POV-Ray, a lathe object is used for creating much the same kind of items,
although we are referring to the object itself rather than the means of production.

Here is some source for a really basic lathe (called | at hdeml. pov).

#i ncl ude "col ors.inc"
backgr ound{ Wi t e}
camera f{

angle 10

| ocation <1, 9, -50>

| ook_at <0, 2, 0>
}
light _source {

<20, 20, -20> color Wite
}

| at he {
i near _spline
6,
<0, 0>, <1,1>, <3,2> <2,3> <2,4>, <0, 4>
pi gment { Blue }
finish {
ambi ent .3
phong .75

}
}

A simple lathe object.

We render this, and what we see is a fairly simply type of lathe, which looks like a child's top. Let's take a look at
how this code produced the effect.

First, a set of six points are declared which the raytracer connects with lines. We note that there are only two

components in the vectors which describe these points. The lines that are drawn are assumed to be in the x-y-plane,
therefore it is as if all the z-components were assumed to be zero. The use of a two-dimensional vector is mandatory

May 1999 POV-Ray 3.1g User Documentation Page 38

(Attempting to use a 3D vector would trigger an error... with one exception, which we will explore later in the
discussion of splines).

Once the lines are determined, the ray-tracer rotates this line around the y-axis, and we can imagine a trail being left
through space as it goes, with the surface of that trail being the surface of our object.

The specified points are connected with straight lines because we used the | i near _spl i ne keyword. There are
other types of splines available with the lathe, which will result in smooth curving lines, and even rounded curving
points of transition, but we will get back to that in a moment.

First, we would like to digress a moment to talk about the difference between a lathe and a surface of revolution
object (SOR). The SOR object, described in a separate tutorial, may seem terribly similar to the lathe at first glance.
It too declares a series of points and connects them with curving lines and then rotates them around the y-axis. The
lathe has certain advantages, such as different kinds of splines, linear, quadratic and cubic, and one more thing:

The simpler mathematics used by a SOR doesn't allow the curve to double back over the same y-coordinates, thus, if
using a SOR, any sudden twist which cuts back down over the same heights that the curve previously covered will
trigger an error. For example, suppose we wanted a lathe to arc up from <0,0> to <2,2>, then to dip back down to
<4,0>. Rotated around the y-axis, this would produce something like a gelatin mold - a rounded semi torus, hollow
in the middle. But with the SOR, as soon as the curve doubled back on itself in the y-direction, it would become an
illegal declaration.

Still, the SOR has one powerful strong point: because it uses simpler order mathematics, it generally tends to render
faster than an equivalent lathe. So in the end, its a matter of: we use a SOR if its limitations will allow, but when we
need a more flexible shape, we go with the lathe instead.

2.4.4.1 Understanding The Concept of Splines

It would be helpful, in order to understand splines, if we had a sort of Spline Workshop where we could practice
manipulating types and points of splines and see what the effects were like. So let's make one! Now that we know
how to create a basic lathe, it will be easy (see file | at hden®. pov):

#i ncl ude "col ors.inc"
camera f{
ort hographi c
up <0, 5, 0>
right <5, 0, 0>
| ocation <2.5, 2.5, -100>
| ook_at <2.5, 2.5, 0>

/* set the control points to be used */
#decl are Red_Poi nt <1.00, 0.00, 0>
#decl are Orange_Poi nt <1.75, 1.00, 0>
#decl are Yel | ow_Poi nt <2.50, 2.00, 0>
#decl are G een_Poi nt <2.00, 3.00, 0>
#decl are Bl ue_Poi nt <1.50, 4.00, 0>
/* nake the control points visible */
cylinder { Red Point, Red Point - 20*z, .1
pi gment { Red }
finish { anmbient 1}

}

cylinder { Orange_Point, Orange Point - 20*z, .1
pi gment { Orange }
finish { anbient 1}

cylinder { Yellow Point, Yellow Point - 20*z, .1
pi gment { Yellow }

May 1999 POV-Ray 3.1g User Documentation Page 39

finish { anbient 1}

cylinder { Green_Point, Geen_Point - 20*z, .1
pi gment { Green }
finish { anbient 1}

cylinder { Blue_Point, Blue_ Point- 20*z, .1
pi gment { Blue }
finish { anbient 1}

}
/* sonething to nake the curve show up */
| at he {

i near _spline

5,

Red_Poi nt,

O ange_Poi nt,

Yel | ow_Poi nt ,
Green_Poi nt,

Bl ue_Poi nt

pigment { Wite }
finish { anbient 1}

A simple "'Spline Workshop™'.

Now, we take a deep breath. We know that all looks a bit weird, but with some simple explanations, we can easily
see what all this does.

First, we are using the orthographic camera. If we haven't read up on that yet, a quick summary is: it renders the
scene flat, eliminating perspective distortion so that in a side view, the objects look like they were drawn on a piece
of graph paper (like in the side view of a modeler or CAD package). There are several uses for this practical hew
type of camera, but here it is allowing us to see our lathe and cylinders edge on, so that what we see is almost like a
cross section of the curve which makes the lathe, rather than the lathe itself. To further that effect, we eliminated
shadowing with the anbi ent 1 finish, which of course also eliminates the need for lighting. We have also
positioned this particular side view so that <0,0> appears at the lower left of our scene.

Next, we declared a set of points. We note that we used 3D vectors for these points rather than the 2D vectors we
expect in a lathe. That's the exception we mentioned earlier. When we declare a 3D point, then use it in a lathe, the
lathe only uses the first two components of the vector, and whatever is in the third component is simply ignored.
This is handy here, since it makes this example possible.

May 1999 POV-Ray 3.1g User Documentation Page 40

Next we do two things with the declared points. First we use them to place small diameter cylinders at the locations
of the points with the circular caps facing the camera. Then we re-use those same vectors to determine the lathe.
Since trying to declare a 2D vector can have some odd results, and isn't really what our cylinder declarations need
anyway, we can take advantage of the lathe's tendency to ignore the third component by just setting the z-coordinate
in these 3D vectors to zero.

The end result is: when we render this code, we see a white lathe against a black background showing us how the
curve we've declared looks, and the circular ends of the cylinders show us where along the x-y-plane our control
points are. In this case, it's very simple. The linear spline has been used so our curve is just straight lines zig-zagging
between the points. We change the declarations of Red_Poi nt and Bl ue_Poi nt to read as follows (see file

| at hdenB. pov).

#decl are Red_Poi nt
#decl are Bl ue_Poi nt

<2.00, 0.00, 0>
<0. 00, 4.00, 0>

Moving some points of the spline.

We re-render and, as we can see, all that happens is that the straight line segments just move to accommodate the
new position of the red and blue points. Linear splines are so simple, we could manipulate them in our sleep, no?

Let's try something different. First, we change the points to the following (see file | at hdem4. pov).

#decl are Red_Poi nt <1.00, 0.00, 0>
#decl are Orange_Poi nt <2.00, 1.00, 0>
#decl are Yel | ow_Poi nt <3.50, 2.00, 0>
#decl are G een_Poi nt <2.00, 3.00, 0>
#decl are Bl ue_Poi nt <1.50, 4.00, 0>

May 1999 POV-Ray 3.1g User Documentation Page 41

A quadratic spline lathe.

We then go down to the lathe declaration and change | i near _spl i ne to quadr ati c_spl i ne. We re-render
and what do we have? Well, there's a couple of things worthy of note this time. First, we will see that instead of
straight lines we have smooth arcs connecting the points. These arcs are made from quadratic curves, so our lathe
looks much more interesting this time. Also, Red_Poi nt is no longer connected to the curve. What happened?

Well, while any two points can determine a straight line, it takes three to determine a quadratic curve. POV-Ray
looks not only to the two points to be connected, but to the point immediately preceding them to determine the
formula of the quadratic curve that will be used to connect them. The problem comes in at the beginning of the
curve. Beyond the first point in the curve there is no previous point. So we need to declare one. Therefore, when
using a quadratic spline, we must remember that the first point we specify is only there so that POV-Ray can
determine what curve to connect the first two points with. It will not show up as part of the actual curve.

There's just one more thing about this lathe example. Even though our curve is now put together with smooth
curving lines, the transitions between those lines is... well, kind of choppy, no? This curve looks like the lines
between each individual point have been terribly mismatched. Depending on what we are trying to make, this could
be acceptable, or, we might long for a more smoothly curving shape. Fortunately, if the latter is true, we have
another option.

The quadratic spline takes longer to render than a linear spline. The math is more complex. Still longer needs the
cubic spline, yet, for a really smoothed out shape, this is the only way to go. We go back into our example, and
simply replace quadr at i c_spl i ne with cubi c_spl i ne (see file | at hdenb. pov). We render one more
time, and take a look at what we have.

May 1999 POV-Ray 3.1g User Documentation Page 42

A cubic spline lathe.

While a quadratic spline takes three points to determine the curve, a cubic needs four. So, as we might expect,

Bl ue_Poi nt has now dropped out of the curve, just as Red_Poi nt did, as the first and last points of our curve
are now only control points for shaping the curves between the remaining points. But look at the transition from
Orange_Poi nt to Yel | ow_Poi nt and then back to Gr een_Poi nt . Now, rather than looking mismatched,
our curve segments look like one smoothly joined curve.

The concept of splines is a handy and necessary one, which will be seen again in the prism and polygon objects. But
with a little tinkering we can quickly get a feel for working with them.

2.4.5 Mesh Object

Mesh objects are very useful because they allow us to create objects containing hundreds or thousands of triangles.
Compared to a simple union of triangles the mesh object stores the triangles more efficiently. Copies of mesh
objects need only a little additional memory because the triangles are stored only once.

Almost every object can be approximated using triangles but we may need a lot of triangles to create more complex
shapes. Thus we will only create a very simple mesh example. This example will show a very useful feature of the
triangles meshes though: a different texture can be assigned to each triangle in the mesh.

Now let's begin. We will create a simple box with differently colored sides. We create an empty file called
nmeshdeno. pov and add the following lines.

canera {
| ocati on <20, 20, -50>
| ook_at <0, 5, 0>
}
light_source { <50, 50, -50> color rgh<l, 1, 1>}
#decl are Red = texture {
pi gment { color rgbh<0.8, 0.2, 0.2>}
finish { anbient 0.2 diffuse 0.5 }
}
#decl are Green = texture {
pi gnment { color rgb<0.2, 0.8, 0.2>}
finish { anbient 0.2 diffuse 0.5 }

#decl are Blue = texture {

pi gnent { color rgb<0.2, 0.2, 0.8>}
finish { anmbient 0.2 diffuse 0.5 }

May 1999 POV-Ray 3.1g User Documentation Page 43

}

We must declare all textures we want to use inside the mesh before the mesh is created. Textures cannot be specified
inside the mesh due to the poor memory performance that would result.

Now we add the mesh object. Three sides of the box will use individual textures while the other will use the global
mesh texture.

mesh {
/* top side */
triangle { <-10, 10, -10>, <10, 10, -10>, <10, 10, 10>
texture { Red }
}

triangle { <10, 10, -10>, <-10, 10, 10>, <10, 10, 10>
texture { Red }
}

/* bottom side */

triangle { <-10, -10, -10>, <10, -10, -10>, <10, -10, 10>}

triangle { <-10, -10, -10>, <-10, -10, 10>, <10, -10, 10>}

/* left side */

triangle { <-10, -10, -10>, <-10, -10, 10>, <-10, 10, 10>}

triangle { <-10, -10, -10>, <-10, 10, -10>, <-10, 10, 10>}

/* right side */

triangle { <10, -10, -10>, <10, -10, 10> <10, 10, 10>
texture { Green }

}

triangle { <10, -10, -10>, <10, 10, -10>, <10, 10, 10>
texture { Green }

/* front side */

triangle { <-10, -10, -10>, <10, -10, -10>, <-10, 10, -10>
texture { Blue }

}

triangle { <-10, 10, -10>, <10, 10, -10>, <10, -10, -10>
texture { Blue }

}
/* back side */
triangle { <-10, -10, 10>, <10, -10, 10>, <-10, 10, 10>}
triangle { <-10, 10, 10>, <10, 10, 10>, <10, -10, 10>}
texture {
pi gment { color rgbh<0.9, 0.9, 0.9>}
finish { anbient 0.2 diffuse 0.7 }
}
}

Tracing the scene at 320x240 we will see that the top, right and front side of the box have different textures. Though
this is not a very impressive example it shows what we can do with mesh objects. More complex examples, also
using smooth triangles, can be found under the scene directory as chesnsh. pov and r obot nsh. pov.

2.4.6 Polygon Object

The pol ygon object can be used to create any planar, n-sided shapes like squares, rectangles, pentagons, hexagons,
octagons, etc.

A polygon is defined by a number of points that describe its shape. Since polygons have to be closed the first point
has to be repeated at the end of the point sequence.

In the following example we will create the word "POV" using just one polygon statement.

May 1999 POV-Ray 3.1g User Documentation Page 44

We start with thinking about the points we need to describe the desired shape. We want the letters to lie in the x-y-
plane with the letter O being at the center. The letters extend from y=0 to y=1. Thus we get the following points for
each letter (the z coordinate is automatically set to zero).

Letter P (outer polygon):
<-0.8, 0.0>, <-0.8, 1.0>,
<-0.3, 1.0>, <-0.3, 0.5>,
<-0.7,0.5>,<-0.7, 0.0>

Letter P (inner polygon):
<-0.7,0.6>, <-0.7, 0.9>,
<-0.4,0.9>, <-0.4, 0.6>

Letter O (outer polygon):
<-0.25, 0.0>, <-0.25, 1.0>,
<0.25,1.0>, <0.25, 0.0>

Letter O (inner polygon):
<-0.15, 0.1>, <-0.15, 0.9>,
<0.15,0.9>,<0.15,0.1>

Letter V:
<0.45, 0.0>, <0.30, 1.0>,
<0.40, 1.0>, <0.55, 0.1>,
<0.70, 1.0>, <0.80, 1.0>,
<0.65, 0.0>

Both letters P and O have a hole while the letter V consists of only one polygon. We'll start with the letter VV because
it is easier to define than the other two letters.

We create a new file called pol ygdem pov and add the following text.

camera f{
ort hographi c
| ocation <0, 0, -10>
right 1.3 * 4/3 * x
up 1.3 * vy
| ook_at <0, 0.5, 0>
}
light source { <25, 25, -100> color rgb 1}
pol ygon {
8

<0.45, 0.0> <0.30, 1.0> // Letter "V
<0.40, 1.0>, <0.55, 0.1>,
<0.70, 1.0>, <0.80, 1.0>,

<0. 65, 0.0>,
<0. 45, 0.0>
pigment { color rgb <1, 0, 0>}

}

As noted above the polygon has to be closed by appending the first point to the point sequence. A closed polygon is
always defined by a sequence of points that ends when a point is the same as the first point.

After we have created the letter VV we'll continue with the letter P. Since it has a hole we have to find a way of
cutting this hole into the basic shape. This is quite easy. We just define the outer shape of the letter P, which is a
closed polygon, and add the sequence of points that describes the hole, which is also a closed polygon. That's all we
have to do. There'll be a hole where both polygons overlap.

In general we will get holes whenever an even number of sub-polygons inside a single polygon statement overlap. A
sub-polygon is defined by a closed sequence of points.

The letter P consists of two sub-polygons, one for the outer shape and one for the hole. Since the hole polygon
overlaps the outer shape polygon we'll get a hole.

May 1999 POV-Ray 3.1g User Documentation Page 45

After we have understood how multiple sub-polygons in a single polygon statement work, it is quite easy to add the
missing O letter.

Finally, we get the complete word POV.

pol ygon {
30,
<-0.8, 0.0> <-0.8, 1.0>, /[l Letter "P"
<-0.3, 1.0> <-0.3, 0.5>, /'l outer shape
<-0.7, 0.5> <-0.7, 0.0>,
<-0.8, 0.0>,
<-0.7, 0.6>, <-0.7, 0.9>, /'l hole
<-0.4, 0.9> <-0.4, 0.6>,
<-0.7, 0.6>
<-0.25, 0.0> <-0.25, 1.0>, /]| Letter "O
< 0.25, 1.0> < 0.25, 0.0> // outer shape
<-0.25, 0.0>,
<-0.15, 0.1> <-0.15, 0.9>, // hole
< 0.15, 0.9> < 0.15, 0.1>,
<-0.15, 0.1>,
<0.45, 0.0>, <0.30, 1.0>, /|l Letter "V

<0.40, 1.0>, <0.55, 0.1>,
<0.70, 1.0>, <0.80, 1.0>,

<0. 65, 0.0>,
<0. 45, 0.0>
pigment { color rgb <1, 0, 0>}

The word "POV" made with one polygon statement.

2.4.7 Prism Object

The prism is essentially a polygon or closed curve which is swept along a linear path. We can imagine the shape so
swept leaving a trail in space, and the surface of that trail is the surface of our prism. The curve or polygon making
up a prism's face can be a composite of any number of sub-shapes, can use any kind of three different splines, and
can either keep a constant width as it is swept, or slowly tapering off to a fine point on one end. But before this gets
too confusing, let's start one step at a time with the simplest form of prism. We enter and render the following POV
code (see file pri smdnil. pov).

#i ncl ude "col ors.inc"
backgr ound{ Wi t e}

May 1999 POV-Ray 3.1g User Documentation Page 46

camera f{
angle 20
| ocation <2, 10, -30>
| ook_at <0, 1, 0>
}
light source { <20, 20, -20> color Wiite }
prism {
i near _sweep
i near_spline
0, // sweep the follow ng shape fromhere ..
1, // ... up through here
7, I/ the nunber of points making up the shape ..
<3,5> <-3,5> <-5,0> <-3,-5> <3, -5> <5,0> <3,5>
pi gment { Green }

A hexagonal prism shape.

This produces a hexagonal polygon, which is then swept from y=0 through y=1. In other words, we now have an
extruded hexagon. One point to note is that although this is a six sided figure, we have used a total of seven points.
That is because the polygon is supposed to be a closed shape, which we do here by making the final point the same
as the first. Technically, with linear polygons, if we didn't do this, POV-Ray would automatically join the two ends
with a line to force it to close, although a warning would be issued. However, this only works with linear splines, so
we mustn't get too casual about those warning messages!

2.4.7.1 Teaching An Old Spline New Tricks

If we followed the section on splines covered under the lathe tutorial (see section "Understanding The Concept of
Splines™), we know that there are two additional kinds of splines besides linear: the quadratic and the cubic spline.
Sure enough, we can use these with prisms to make a more free form, smoothly curving type of prism.

There is just one catch, and we should read this section carefully to keep from tearing our hair out over mysterious
"too few points in prism" messages which keep our prism from rendering. We can probably guess where this is
heading: how to close a non-linear spline. Unlike the linear spline, which simply draws a line between the last and
first points if we forget to make the last point equal to the first, quadratic and cubic splines are a little more fussy.

First of all, we remember that quadratic splines determine the equation of the curve which connects any two points

based on those two points and the previous point, so the first point in any quadratic spline is just control point and
won't actually be part of the curve. What this means is: when we make our shape out of a quadratic spline, we must

May 1999 POV-Ray 3.1g User Documentation Page 47

match the second point to the last, since the first point is not on the curve - it's just a control point needed for
computational purposes.

Likewise, cubic splines need both the first and last points to be control points, therefore, to close a shape made with
a cubic spline, we must match the second point to the second from last point. If we don't match the correct points on
a quadratic or cubic shape, that's when we will get the "too few points in prism™ error. POV-Ray is still waiting for
us to close the shape, and when it runs out of points without seeing the closure, an error is issued.

Confused? Okay, how about an example? We replace the prism in our last bit of code with this one (see file
prisndnmR. pov).
prism{
cubi c_spline
0, // sweep the follow ng shape fromhere ...

1, // ... up through here

6, // the nunber of points making up the shape ...

< 3, -5> // point#l1 (control point... not on curve)
<3, 5> [// point#2 ... THI S PONT ...

<-5, 0>, // point#3

<3, -5> [// point#4

<3, 5> // point#5 ... MJST MATCH TH S PO NT

<-5, 0> // point#6 (control point... not on curve)
pi gment { Green }

A cubic, triangular prism shape.

This simple prism produces what looks like an extruded triangle with its corners sanded smoothly off. Points two,
three and four are the corners of the triangle and point five closes the shape by returning to the location of point two.
As for points one and six, they are our control points, and aren't part of the shape - they're just there to help compute
what curves to use between the other points.

2.4.7.2 Smooth Transitions

Now a handy thing to note is that we have made point one equal point four, and also point six equals point three.
Yes, this is important. Although this prism would still be legally closed if the control points were not what we've
made them, the curve transitions between points would not be as smooth. We change points one and six to <4,6>
and <0,7> respectively and re-render to see how the back edge of the shape is altered (see file pri snmdn8. pov).

May 1999 POV-Ray 3.1g User Documentation Page 48

To put this more generally, if we want a smooth closure on a cubic spline, we make the first control point equal to
the third from last point, and the last control point equal to the third point. On a quadratic spline, the trick is similar,
but since only the first point is a control point, make that equal to the second from last point.

2.4.7.3 Multiple Sub-Shapes

Just as with the polygon object (see section "Polygon Object") the prism is very flexible, and allows us to make one
prism out of several sub-prisms. To do this, all we need to do is keep listing points after we have already closed the
first shape. The second shape can be simply an add on going off in another direction from the first, but one of the
more interesting features is that if any even number of sub-shapes overlap, that region where they overlap behaves
as though it has been cut away from both sub-shapes. Let's look at another example. Once again, same basic code as
before for camera, light and so forth, but we substitute this complex prism (see file pri smdn4. pov).

prism {
i near _sweep
cubi c_spline
0, /! sweep the followi ng shape fromhere ..
1, /I ... up through here
18, // the nunber of points nmaking up the shape ..
<3,-5> <3,5> <-5,0» <3, -5> <3,5> <-5 0> // sub-shape #1
<2,-4>, <2,4>, <-4,0>, <2,-4> <2,4> <-4,0>, [/ sub-shape #2
<1,-3> <1,3> <-3,0> <1, -3> <1,3> <-3,0> // sub-shape #3
pi gment { Green }

Using sub-shapes to create a more complex shape.

For readability purposes, we have started a new line every time we moved on to a new sub-shape, but the ray-tracer
of course tells where each shape ends based on whether the shape has been closed (as described earlier). We render
this new prism, and look what we've got. It's the same familiar shape, but it now looks like a smaller version of the
shape has been carved out of the center, then the carved piece was sanded down even smaller and set back in the
hole.

Simply, the outer rim is where only sub-shape one exists, then the carved out part is where sub-shapes one and two
overlap. In the extreme center, the object reappears because sub-shapes one, two, and three overlap, returning us to
an odd number of overlapping pieces. Using this technique we could make any number of extremely complex prism
shapes!

May 1999 POV-Ray 3.1g User Documentation Page 49

2.4.7.4 Conic Sweeps And The Tapering Effect

In our original prism, the keyword | i near _sweep is actually optional. This is the default sweep assumed for a
prism if no type of sweep is specified. But there is another, extremely useful kind of sweep: the conic sweep. The
basic idea is like the original prism, except that while we are sweeping the shape from the first height through the
second height, we are constantly expanding it from a single point until, at the second height, the shape has expanded
to the original points we made it from. To give a small idea of what such effects are good for, we replace our
existing prism with this (see file pri sndmd. pov):

prism {
coni c_sweep
i near _spline
0, // height 1
1, // height 2
5, /'/ the nunber of points nmaking up the shape..
<4,4>,<-4,4>,<-4,-4>,<4,-4>,<4, 4>
rotate <180, 0, 0>
translate <0, 1, 0>
scale <1, 4, 1>
pigment { gradient y scale .2}

Creating a pyramid using conic sweeping.

The gradient pigment was selected to give some definition to our object without having to fix the lights and the
camera angle right at this moment, but when we render it, we what we've created? A horizontally striped pyramid!
By now we can recognize the linear spline connecting the four points of a square, and the familiar final point which
is there to close the spline.

Notice all the transformations in the object declaration. That's going to take a little explanation. The rotate and
translate are easy. Normally, a conic sweep starts full sized at the top, and tapers to a point at y=0, but of course that
would be upside down if we're making a pyramid. So we flip the shape around the x-axis to put it right side up, then
since we actually orbited around the point, we translate back up to put it in the same position it was in when we
started.

The scale is to put the proportions right for this example. The base is eight units by eight units, but the height (from
y=1 to y=0) is only one unit, so we've stretched it out a little. At this point, we're probably thinking, "why not just
sweep up from y=0 to y=4 and avoid this whole scaling thing?"

That is a very important gotcha! with conic sweeps. To see what's wrong with that, let's try and put it into practice
(see file pri smdnb. pov). We must make sure to remove the scale statement, and then replace the line which reads

May 1999 POV-Ray 3.1g User Documentation Page 50

1, // height 2
with
4, /1 height 2
This sets the second height at y=4, so let's re-render and see if the effect is the same.

Choosing a second height larger than one for the conic sweep.

Whoa! Our height is correct, but our pyramid's base is now huge! What went wrong here? Simple. The base, as we
described it with the points we used actually occurs at y=1 no matter what we set the second height for. But if we do
set the second height higher than one, once the sweep passes y=1, it keeps expanding outward along the same lines
as it followed to our original base, making the actual base bigger and bigger as it goes.

To avoid losing control of a conic sweep prism, it is usually best to let the second height stay at y=1, and use a scale
statement to adjust the height from its unit size. This way we can always be sure the base's corners remain where we
think they are.

That leads to one more interesting thing about conic sweeps. What if we for some reason don't want them to taper all
the way to a point? What if instead of a complete pyramid, we want more of a ziggurat step? Easily done. After
putting the second height back to one, and replacing our scale statement, we change the line which reads

0, // height 1
to
0.251, // height 1

May 1999 POV-Ray 3.1g User Documentation Page 51

Increasing the first height for the conic sweep.

When we re-render, we see that the sweep stops short of going all the way to its point, giving us a pyramid without a
cap. Exactly how much of the cap is cut off depends on how close the first height is to the second height.

2.4.8 Superquadric Ellipsoid Object

Sometimes we want to make an object that does not have perfectly sharp edges like a box does. Then, the
superquadric ellipsoid shape made by the super el | i psoi d is a useful object. It is described by the simple
syntax:

superel | i psoid { <Value_E, Value_N >}

Where Value_E and Value_N are float values greater than zero and less than or equal to one. Let's make a
superellipsoid and experiment with the values of Value_E and Value_N to see what kind of shapes we can make.

We create a file called supel | ps. pov and edit it as follows:

#i nclude "col ors.inc"
canera ({
| ocati on <10, 5, -20>
| ook_at O
angle 15
}
background { color rgb <5, .5, .5>}
light _source { <10, 50, -100> Wiite }

The addition of a gray background makes it a little easier to see our object. We now type:

superel lipsoid { <.25, .25>
pi gment { Red }

We save the file and trace it at 200x150 - A to see the shape. It will look like a box, but the edges will be rounded
off. Now let's experiment with different values of Value_E and Value_N. For the next trace, try <1, 0.2>. The shape
now looks like a cylinder, but the top edges are rounded. Now try <0.1, 1>. This shape is an odd one! We don't
know exactly what to call it, but it is interesting. Finally, lets try <1, 1>. Well, this is more familiar... a sphere!

There are a couple of facts about superellipsoids we should know. First, we should not use a value of 0 for either
Value_E nor Value_N. This will cause POV-Ray to incorrectly make a black box instead of our desired shape.
Second, very small values of Value_E and Value_N may yield strange results so they should be avoided. Finally, the
Sturmian root solver will not work with superellipsoids.

May 1999 POV-Ray 3.1g User Documentation Page 52

Superellipsoids are finite objects so they respond to auto-bounding and can be used in CSG.

Now let's use the superellipsoid to make something that would be useful in a scene. We will make a tiled floor and
place a couple of superellipsoid objects hovering over it. We can start with the file we have already made.

Werenameittoti | es. pov and edit it so that it reads as follows:

#i ncl ude "col ors.inc"
#i ncl ude "textures.inc"
camera f{
| ocati on <10, 5, -20>
| ook_at O
angle 15

}
background { color rgh <.5, .5, .5>}
light _source{ <10, 50, -100> Wite }

Note that we have added #i ncl ude "textures.inc" sowe can use pre-defined textures. Now we want to
define the superellipsoid which will be our tile.

#declare Tile = superellipsoid { <0.5, 0.1>
scal e <1, .05, 1>
}

Superellipsoids are roughly 2*2*2 units unless we scale them otherwise. If we wish to lay a bunch of our tiles side
by side, they will have to be offset from each other so they don't overlap. We should select an offset value that is
slightly more than 2 so that we have some space between the tiles to fill with grout. So we now add this:

#declare O fset = 2.1;

We now want to lay down a row of tiles. Each tile will be offset from the original by an ever-increasing amount in
both the +z and -z directions. We refer to our offset and multiply by the tile's rank to determine the position of each
tile in the row. We also union these tiles into a single object called Row like this:

#decl are Row = union {

object { Tile }

object { Tile translate z*Ofset }
object { Tile translate z*Offset*2 }
object { Tile translate z*Offset*3 }
object { Tile translate z*Offset*4 }
object { Tile translate z*Offset*5 }
object { Tile translate z*Offset*6 }
object { Tile translate z*Offset*7 }
object { Tile translate z*Offset*8 }
object { Tile translate z*Offset*9 }
object { Tile translate z*Offset*10 }
object { Tile translate -z*Offset }
object { Tile translate -z*Offset*2 }
object { Tile translate -z*Offset*3 }
object { Tile translate -z*Offset*4 }
object { Tile translate -z*Offset*5 }
object { Tile translate -z*Offset*6 }

}

This gives us a single row of 17 tiles, more than enough to fill the screen. Now we must make copies of the Rowand
translate them, again by the offset value, in both the +x and -x directions in ever increasing amounts in the same
manner.

object { Row }

object { Row translate x*Offset }

object { Row translate x*Ofset*2 }

May 1999 POV-Ray 3.1g User Documentation Page 53

object { Row translate x*Ofset*3 }
object { Row translate x*Ofset*4 }
object { Row translate x*Offset*5 }
object { Row translate x*Ofset*6 }
object { Row translate x*Ofset*7 }
object { Row translate -x*Ofset }

object { Row translate -x*Offset*2 }
object { Row translate -x*Offset*3 }
object { Row translate -x*Offset*4 }
object { Row translate -x*Offset*5 }
object { Row translate -x*Offset*6 }
object { Row translate -x*Offset*7 }

Finally, our tiles are complete. But we need a texture for them. To do this we union all of the Rows together and
apply a Whi t e Mar bl e pigment and a somewhat shiny reflective surface to it:

uni on{
object { Row }
object { Row translate x*Offset }
object { Row translate x*Ofset*2 }
object { Row translate x*Ofset*3 }
object { Row translate x*Ofset*4 }
object { Row translate x*Offset*5 }
object { Row translate x*Ofset*6 }
object { Row translate x*Ofset*7 }
object { Row translate -x*Ofset }
object { Row translate -x*Offset*2 }
object { Row translate -x*Ofset*3 }
object { Row translate -x*Ofset*4 }
object { Row translate -x*Offset*5 }
object { Row translate -x*Offset*6 }
object { Row translate -x*Offset*7 }

pigment { White Marble }
finish { phong 1 phong_size 50 reflection .35 }
}

We now need to add the grout. This can simply be a white plane. We have stepped up the ambient here a little so it
looks whiter.

plane { y, O //this is the grout
pi gment { color Wite }
finish { anbient .4 diffuse .7 }
}

To complete our scene, let's add five different superellipsoids, each a different color, so that they hover over our tiles
and are reflected in them.

superel lipsoid {
<0.1, 1>
pigment { Red }
translate <5, 3, 0>
scale .45

superel lipsoid {
<1, 0.25>
pi gment { Blue }
translate <-5, 3, 0>
scal e .45

}

superel l'ipsoid {

May 1999 POV-Ray 3.1g User Documentation Page 54

<0.2, 0.6>
pi gnent { Green }
translate <0, 3, 5>

scal e .45

}

superel lipsoid {
<0. 25, 0.25>
pi gnent { Yellow }
translate <0, 3, -5>
scal e .45

}

superel lipsoid {
<1, 1>
pi gment { Pink }
translate y*3
scal e .45

}

Some superellipsoids hovering above a tiled floor.

We trace the scene at 320x200 - A to see the result. If we are happy with that, we do a final trace at 640x480
+A0. 2.
2.4.9 Surface of Revolution Object

Bottles, vases and glasses make nice objects in ray-traced scenes. We want to create a golden cup using the surface
of revolution object (SOR object).

We first start by thinking about the shape of the final object. It is quite difficult to come up with a set of points that

describe a given curve without the help of a modeling program supporting POV-Ray's surface of revolution object.
If such a program is available we should take advantage of it.

May 1999 POV-Ray 3.1g User Documentation Page 55

- 7
10.0 P,
8.0
- 6.0
=
=
@
T 40
2.0
P1
D.D | . F-_____.-
Pyye—-==~
4.0 20 0.0 2.0 ' 4.0
Radius r

The point configuration of our cup object.

We will use the point configuration shown in the figure above. There are eight points describing the curve that will
be rotated about the y-axis to get our cup. The curve was calculated using the method described in the reference
section (see "Surface of Revolution").

Now it is time to come up with a scene that uses the above SOR object. We edit a file called sor deno. pov and
enter the following text.

#i ncl ude "col ors.inc"
#i ncl ude "gol ds.inc"
gl obal _settings { assuned_ganma 2.2 }
canera ({
| ocation <10, 15, -20>
| ook_at <0, 5, 0>
angl e 45
}
background { color rgb<0.2, 0.4, 0.8> }
light _source { <100, 100, -100> color rgbh 1}
plane { vy, O
pi gment { checker color Red, color Green scale 10 }

sor {
8,
<0.0, -0.5>,
<3.0, 0. 0>,

<1.0, 0. 2>,
<0. 5, 0. 4>,

May 1999 POV-Ray 3.1g User Documentation Page 56

<0. 5, 4. 0>,

<1.0, 5. 0>,

<3.0, 10.0>,

<4.0, 11.0>

texture { T _Gold 1B }
}

The scene contains our cup object resting on a checkered plane. Tracing this scene results in the image below.

A surface of revolution object.

The surface of revolution is described by starting with the number of points followed by the points with ascending
heights. Each point determines the radius of the curve for a given height. E. g. the first point tells POV-Ray that at
height -0.5 the radius is 0. We should take care that each point has a larger height than its predecessor. If this is not
the case the program will abort with an error message.

2.4.10 Text Object

Creating t ext objects using POV-Ray always used to mean that the letters had to be built either from CSG, a
painstaking process or by using a black and white image of the letters as a height field, a method that was only
somewhat satisfactory. Now, for POV-Ray 3.0, a new primitive has been introduced that can use any TrueType font
to create text objects. These objects can be used in CSG, transformed and textured just like any other POV primitive.

For this tutorial, we will make two uses of the text object. First, let's just make some block letters sitting on a
checkered plane. Any TTF font should do, but for this tutorial, we will use theti mom ttf orcyrvetic.ttf
which come bundled with POV-Ray. We create a file called t ext denp. pov and edit it as follows:

#i ncl ude "col ors.inc"
canera ({
|l ocation <0, 1, -10>
| ook_at O
angle 35

}
i ght _source { <500, 500, -1000> Wite }
plane { vy, 0

pi gment { checker Green Wite }

Now let's add the text object. We will use the fontti nr om tt f and we will create the string "POV-RAY 3.0". For
now, we will just make the letters red. The syntax is very simple. The first string in quotes is the font name, the
second one is the string to be rendered. The two floats are the thickness and offset values. The thickness float

May 1999 POV-Ray 3.1g User Documentation Page 57

determines how thick the block letters will be. Values of .5 to 2 are usually best for this. The offset value will add to
the kerning distance of the letters. We will leave this a 0 for now.

text { ttf "tinromttf" "POV-RAY 3.0" 1, O
pigment { Red }

Rendering this at 200x150 - A, we notice that the letters are off to the right of the screen. This is because they are
placed so that the lower left front corner of the first letter is at the origin. To center the string we need to translate it -
x some distance. But how far? In the docs we see that the letters are all 0.5 to 0.75 units high. If we assume that each
one takes about 0.5 units of space on the x-axis, this means that the string is about 6 units long (12 characters and
spaces). Let's translate the string 3 units along the negative x-axis.

text { ttf "tinromttf" "POV-RAY 3.0" 1, O
pi gment { Red }
transl ate -3*x

}

That's better. Now let's play around with some of the parameters of the text object. First, let's raise the thickness
float to something outlandish... say 25!

text { ttf "tinromttf" "POV-RAY 3.0" 25, 0O
pi gment { Red }
transl ate -2.25%x

}

Actually, that's kind of cool. Now let's return the thickness value to 1 and try a different offset value. Change the
offset float from 0 to 0.1 and render it again.

Wait a minute?! The letters go wandering off up at an angle! That is not what the docs describe! It almost looks as if
the offset value applies in both the x- and y-axis instead of just the x axis like we intended. Could it be that a vector
is called for here instead of a float? Let's try it. We replace 0. 1 with 0. 1* x and render it again.

That works! The letters are still in a straight line along the x-axis, just a little further apart. Let's verify this and try to
offset just in the y-axis. We replace 0. 1* x with 0. 1*y. Again, this works as expected with the letters going up to
the right at an angle with no additional distance added along the x-axis. Now let's try the z-axis. We replace 0. 1*y
with 0. 1* z. Rendering this yields a disappointment. No offset occurs! The offset value can only be applied in the
x- and y-directions.

Let's finish our scene by giving a fancier texture to the block letters, using that cool large thickness value, and
adding a slight y-offset. For fun, we will throw in a sky sphere, dandy up our plane a bit, and use a little more
interesting camera viewpoint (we render the following scene at 640x480 +A0. 2):

#i nclude "col ors.inc"
canera ({
| ocation <-5,.15,-2>
| ook _at <.3,.2,1>
angl e 35
}
Iight_source { <500, 500, -1000> Wite }
plane { vy, 0
texture {
pi gment { SeaGreen }
finish { reflection .35 specular 1}
normal { ripples .35 turbulence .5 scale .25 }

}

}

text { ttf "tinmomttf" "POV-RAY 3.0" 25, 0.1*y
pi gment { BrightGold }
finish { reflection .25 specular 1}

May 1999 POV-Ray 3.1g User Documentation Page 58

transl ate -3*x

}

#i ncl ude "skies.inc"
sky _sphere { S C oud5 }

Let's try using text in a CSG object. We will attempt to create an inlay in a stone block using a text object. We create
a new file called t ext csg. pov and edit it as follows:

#i ncl ude "col ors.inc"
#i ncl ude "stones.inc"
background { color rgb 1}
canera ({

| ocation <-3, 5, -15>

| ook_at O

angle 25

}
light_source { <500, 500, -1000> Wite }

Now let's create the block. We want it to be about eight units across because our text string "POV-RAY 3.0" is about
six units long. We also want it about four units high and about one unit deep. But we need to avoid a potential
coincident surface with the text object so we will make the first z-coordinate 0.1 instead of 0. Finally, we will give
this block a nice stone texture.

box { <3.5, -1, 0.1> <3.5, 1, 1>
texture { T_StonelO }
}

Next, we want to make the text object. We can use the same object we used in the first tutorial except we will use
slightly different thickness and offset values.

text { ttf "tinromttf" "POV-RAY 3.0" 0.15, O
pi gment { BrightGold }
finish { reflection .25 specular 1 }
transl ate -3*x

}

We remember that the text object is placed by default so that its front surface lies directly on the x-y-plane. If the
front of the box begins at z=0.1 and thickness is set at 0.15, the depth of the inlay will be 0.05 units. We place a
difference block around the two objects.

di fference {
box { <3.5, -1, 0.1> <3.5, 1, 1>
texture { T _StonelO }
}
text { ttf "tinromttf" "POV-RAY 3.0" 0.15, O
pi gment { BrightGold }
finish { reflection .25 specular 1 }
translate -3*x
}
}

May 1999 POV-Ray 3.1g User Documentation Page 59

Text carved from stone.

We render this at 200x150 - A. We can see the inlay clearly and that it is indeed a bright gold color. We re-render at
640x480 +A0. 2 to see the results more clearly, but be forewarned... this trace will take a little time.

2.4.11 Torus Object

At or us can be thought of as a donut or an inner-tube. It is a shape that is vastly useful in many kinds of CSG so
POV-Ray has adopted this 4th order quartic polynomial as a primitive shape. The syntax for a torus is so simple that
it makes it a very easy shape to work with once we learn what the two float values mean. Instead of a lecture on the
subject, let's create one and do some experiments with it.

We create a file called t or denp. pov and edit it as follows:

#i ncl ude "col ors.inc"
canera ({
|l ocation <0, .1, -25>
| ook_at O
angle 30

}

background { color Gray50 } // to make the torus easy to see
i ght _source{ <300, 300, -1000> Wite }
torus { 4, 1 /1 major and m nor radius

rotate -90*x /1 so we can see it fromthe top

pi gment { Green }

We trace the scene. Well, it's a donut alright. Let's try changing the major and minor radius values and see what
happens. We change them as follows:

torus { 5, .25 /1 major and m nor radius
That looks more like a hula-hoop! Let's try this:

torus { 3.5, 2.5 /1 major and m nor radius
Whoa! A donut with a serious weight problem!

With such a simple syntax, there isn't much else we can do to a torus besides change its texture... or is there? Let's
see...

Torii are very useful objects in CSG. Let's try a little experiment. We make a difference of a torus and a box:

May 1999 POV-Ray 3.1g User Documentation Page 60

di fference {
torus { 4, 1
rotate x*-90 // so we can see it fromthe top

}
box { <5, -5, -1> <5, 0, 1>}
pi gment { Green }

Interesting... a half-torus. Now we add another one flipped the other way. Only, let's declare the original half-torus
and the necessary transformations so we can use them again:

#declare Half_Torus = difference {
torus { 4, 1
rotate -90*x // so we can see it fromthe top

}
box { <5, -5, -1> <5, 0, 1>}
pi gment { Green }
}
#declare Flip_It_Over = 180*x;
#decl are Torus_Translate = 8; // twice the major radius

Now we create a union of two Hal f _Tor us objects:

uni on {
object { Half_Torus }
object { Half_Torus
rotate Flip_It_Over
transl ate Torus_Transl at e*x
}
}

This makes an S-shaped object, but we can't see the whole thing from our present camera. Let's add a few more
links, three in each direction, move the object along the +z-direction and rotate it about the +y-axis so we can see
more of it. We also notice that there appears to be a small gap where the half Torii meet. This is due to the fact that
we are viewing this scene from directly on the x-z-plane. We will change the camera's y-coordinate from 0 to 0.1 to
eliminate this.
uni on {
object { Half_Torus }
object { Half_Torus
rotate Flip_It_Over
translate x*Torus_Transl ate

}
object { Half_Torus
translate x*Torus_Transl ate*2

}
object { Half_Torus
rotate Flip_It_Over
translate x*Torus_Transl ate*3

}

object { Half_Torus
rotate Flip_It_Over
translate -x*Torus_Transl ate

}
object { Half_Torus
translate -x*Torus_Transl ate*2

}
object { Half_Torus

rotate Flip_It_Over
translate -x*Torus_Transl ate*3

May 1999 POV-Ray 3.1g User Documentation Page 61

}
object { Half_Torus

translate -x*Torus_Transl ate*4
}
rotate y*45
translate z*20

}

Rendering this we see a cool, undulating, snake-like something-or-other. Neato. But we want to model something
useful, something that we might see in real life. How about a chain?

Thinking about it for a moment, we realize that a single link of a chain can be easily modeled using two half tori and
two cylinders. We create a new file. We can use the same camera, background, light source and declared objects and
transformations as we used in t or deno. pov:

#i ncl ude "col ors.inc"
camera f{
| ocation <0, .1, -25>
| ook_at O
angle 30
}
background { col or G ay50 }
[ight_source{ <300, 300, -1000> Wiite }
#declare Half_Torus = difference {

torus { 4,1

sturm

rotate x*-90 // so we can see it fromthe top
}

box { <5, -5, -1> <5, 0, 1>}
pi gment { Green }

#declare Flip_It _Over = x*180;
#decl are Torus_Transl ate = 8;

Now, we make a complete torus of two half tori:

uni on {
object { Half_Torus }
object { Half_Torus rotate Flip_It_Over }

}

This may seem like a wasteful way to make a complete torus, but we are really going to move each half apart to
make room for the cylinders. First, we add the declared cylinder before the union:

#decl are Chain_Segnent = cylinder { <0, 4, 0> <0, -4, 0> 1
pi gment { Green }

We then add two Chai n_Segment s to the union and translate them so that they line up with the minor radius of
the torus on each side:

uni on {
object { Half_Torus }
object { Half_Torus rotate Flip_It_Over }
obj ect { Chain_Segment translate x*Torus_Translate/2 }
obj ect { Chain_Segnent translate -x*Torus_Translate/2 }
}

Now we translate the two half tori +y and -y so that the clipped ends meet the ends of the cylinders. This distance is
equal to half of the previously declared Tor us_Tr ansl at e:

uni on {

May 1999 POV-Ray 3.1g User Documentation Page 62

object { Half_Torus
translate y*Torus_Transl ate/ 2

}
object { Half_Torus
rotate Flip_It_Over
translate -y*Torus_Transl ate/ 2
}
obj ect { Chai n_Segnent
translate x*Torus_Transl ate/ 2
}
obj ect { Chai n_Segnent
translate -x*Torus_Transl ate/ 2
}
}

We render this and viola! A single link of a chain. But we aren't done yet! Whoever heard of a green chain? We
would rather use a nice metallic color instead. First, we remove any pigment blocks in the declared torsos and

cylinders. Then we add the following before the union:

#declare Chain_CGold = texture {
pi gment { BrightGold }

finish {
anbient .1
diffuse .4

reflection .25
specul ar 1
netallic

}
}

We then add the texture to the union and declare the union as a single link:

#decl are Link = union {
object { Half_Torus
translate y*Torus_Transl ate/ 2

}
object { Half_Torus

rotate Flip_It_Over

translate -y*Torus_Transl ate/ 2
}
obj ect { Chai n_Segnent

transl ate x*Torus_Transl ate/ 2
}
obj ect { Chai n_Segnent

translate -x*Torus_Transl ate/ 2

}
texture { Chain_CGold }

}

Now we make a union of two links. The second one will have to be translated +y so that its inner wall just meets the
inner wall of the other link, just like the links of a chain. This distance turns out to be double the previously declared

Tor us_Tr ansl at e minus 2 (twice the minor radius). This can be described by the expression:
Torus_Transl at e*2-2*y

We declare this expression as follows:
#decl are Link_Translate = Torus_Transl at e*2- 2*y;

May 1999 POV-Ray 3.1g User Documentation

Page 63

In the object block, we will use this declared value so that we can multiply it to create other links. Now, we rotate
the second link 90*y so that it is perpendicular to the first, just like links of a chain. Finally, we scale the union by
1/4 so that we can see the whole thing:

uni on {
object { Link }
object { Link translate y*Link_Translate rotate y*90 }
scale .25

}

We render this and we will see a very realistic pair of links. If we want to make an entire chain, we must declare the
above union and then create another union of this declared object. We must be sure to remove the scaling from the
declared object:

#declare Link _Pair =
uni on {
object { Link }
object { Link translate y*Link_Translate rotate y*90 }

Now we declare our chain:
#decl are Chain = union {

object { Link_Pair}

object { Link _Pair translate y*Link_Translate*2 }
object { Link Pair translate y*Link Translate*4 }
object { Link Pair translate y*Link Translate*6 }
object { Link _Pair translate -y*Link_Translate*2 }
object { Link _Pair translate -y*Link_Translate*4 }
object { Link _Pair translate -y*Link_Translate*6 }

}

And finally we create our chain with a couple of transformations to make it easier to see. These include scaling it
down by a factor of 1/10, and rotating it so that we can clearly see each link:

object { Chain scale .1 rotate <0, 45, -45>}

o
i
& 4’7
4*,//
Vo
i z-“'
s
A7

The torus object can be used to create chains.

We render this and we should see a very realistic gold chain stretched diagonally across the screen.

May 1999 POV-Ray 3.1g User Documentation Page 64

2.5 The Light Source

In any ray-traced scene, the light needed to illuminate our objects and their surfaces must come from a light source.
There are many kinds of light sources available in POV-Ray and careful use of the correct kind can yield very
impressive results. Let's take a moment to explore some of the different kinds of light sources and their various
parameters.

2.5.1 The Pointlight Source

Pointlights are exactly what the name indicates. A pointlight has no size, is invisible and illuminates everything in
the scene equally no matter how far away from the light source it may be (this behavior can be changed). This is the
simplest and most basic light source. There are only two important parameters, location and color. Let's design a
simple scene and place a pointlight source in it.

We create a new file and name it | i t edeno. pov. We edit it as follows:

#i ncl ude "col ors.inc"

#i ncl ude "textures.inc"

canera ({
| ocation <-4, 3, -9>
| ook _at <0, 0, 0>
angl e 48

}

We add the following simple objects

plane { vy, -1
texture {
pi gment {
checker
col or rgh<0.5, 0, 0>
color rgbh<0, 0.5, 0.5>

—h

i nish {
diffuse 0.4
anbient 0.2
phong 1
phong_si ze 100
reflection 0.25

}
}

}
torus { 1.5, 0.5

texture { Brown_Agate }
rotate <90, 160, 0>
translate <-1, 1, 3>

}

box { <1, -1, -1> <1, 1, 1>
texture { DMFLi ght Cak }
translate <2, 0, 2.3>

}

cone { <0,1,0> 0, <0,0,0> 1
texture { PinkAl abaster }
scale <1, 3, 1>
translate <-2, -1, -1>

}
sphere { <0,0,0>,1
texture { Sapphire_Agate }

May 1999 POV-Ray 3.1g User Documentation Page 65

translate <1.5, 0, -2>

}
Now we add a pointlight:

light _source {
<2, 10, -3>
color Wite

}

We render this at 200x150 - A and see that the objects are clearly visible with sharp shadows. The sides of curved
objects nearest the light source are brightest in color with the areas that are facing away from the light source being
darkest. We also note that the checkered plane is illuminated evenly all the way to the horizon. This allows us to see
the plane, but it is not very realistic.

2.5.2 The Spotlight Source

Spotlights are a very useful type of light source. They can be used to add highlights and illuminate features much as
a photographer uses spots to do the same thing. To create a spotlight simply add the spot | i ght keyword to a
regular point light. There are a few more parameters with spotlights than with pointlights. These are r adi us,
fallof f,tightness andpoi nt _at. Theradi us parameter is the angle of the fully illuminated cone. The
fal | of f parameter is the angle of the umbra cone where the light falls off to darkness. The t i ght ness isa
parameter that determines the rate of the light falloff. The poi nt _at parameter is just what it says, the location
where the spotlight is pointing to. Let's change the light in our scene as follows:

[ight _source {
<0, 10, -3>
color White
spot | i ght
radi us 15
fallof f 20
ti ght ness 10
poi nt _at <0, 0, 0>
}

We render this at 200x150 - A and see that only the objects are illuminated. The rest of the plane and the outer
portions of the objects are now unlit. There is a broad falloff area but the shadows are still razor sharp. Let's try
fiddling with some of these parameters to see what they do. We change the falloff value to 16 (it must always be
larger than the radius value) and render again. Now the falloff is very narrow and the objects are either brightly lit
or in total darkness. Now we change falloff back to 20 and change the tightness value to 100 (higher is tighter) and
render again. The spotlight appears to have gotten much smaller but what has really happened is that the falloff has
become so steep that the radius actually appears smaller.

We decide that a tightness value of 10 (the default) and a falloff value of 18 are best for this spotlight and we now
want to put a few spots around the scene for effect. Let's place a slightly narrower blue and a red one in addition to
the white one we already have:

light _source {
<10, 10, -1>
col or Red
spot | i ght
radi us 12
falloff 14
ti ght ness 10
poi nt _at <2, 0, 0>

—_——

i ght _source {
<-12, 10, -1>
col or Bl ue

May 1999 POV-Ray 3.1g User Documentation Page 66

spot | i ght

radi us 12

falloff 14

ti ghtness 10

point_at <-2, 0, 0>
}

Rendering this we see that the scene now has a wonderfully mysterious air to it. The three spotlights all converge on
the objects making them blue on one side and red on the other with enough white in the middle to provide a balance.

2.5.3 The Cylindrical Light Source

Spotlights are cone shaped, meaning that their effect will change with distance. The farther away from the spotlight
an object is, the larger the apparent radius will be. But we may want the radius and falloff to be a particular size no
matter how far away the spotlight is. For this reason, cylindrical light sources are needed. A cylindrical light source
is just like a spotlight, except that the radius and falloff regions are the same no matter how far from the light source
our object is. The shape is therefore a cylinder rather than a cone. We can specify a cylindrical light source by
replacing the spot | i ght keyword with the cyl i nder keyword. We try this now with our scene by replacing all
three spotlights with cylinder lights and rendering again. We see that the scene is much dimmer. This is because the
cylindrical constraints do not let the light spread out like in a spotlight. Larger radius and falloff values are needed to
do the job. We try a radius of 20 and a falloff of 30 for all three lights. That's the ticket!

2.5.4 The Area Light Source

So far all of our light sources have one thing in common. They produce sharp shadows. This is because the actual
light source is a point that is infinitely small. Objects are either in direct sight of the light, in which case they are
fully illuminated, or they are not, in which case they are fully shaded. In real life, this kind of stark light and shadow
situation exists only in outer space where the direct light of the sun pierces the total blackness of space. But here on
Earth, light bends around objects, bounces off objects, and usually the source has some dimension, meaning that it
can be partially hidden from sight (shadows are not sharp anymore). They have what is known as an umbra, or an
area of fuzziness where there is neither total light or shade. In order to simulate these soft shadows, a ray-tracer must
give its light sources dimension. POV-Ray accomplishes this with a feature known as an area light.

Area lights have dimension in two axis'. These are specified by the first two vectors in the area light syntax. We
must also specify how many lights are to be in the array. More will give us cleaner soft shadows but will take longer
to render. Usually a 3*3 or a 5*5 array will suffice. We also have the option of specifying an adaptive value. The
adapt i ve keyword tells the ray-tracer that it can adapt to the situation and send only the needed rays to determine
the value of the pixel. If adaptive is not used, a separate ray will be sent for every light in the area light. This can
really slow things down. The higher the adaptive value the cleaner the umbra will be but the longer the trace will
take. Usually an adaptive value of 1 is sufficient. Finally, we probably should use thej i t t er keyword. This tells
the ray-tracer to slightly move the position of each light in the area light so that the shadows appear truly soft instead
of giving us an umbra consisting of closely banded shadows.

OK, let's try one. We comment out the cylinder lights and add the following:

[ight _source {
<2, 10, -3>
color Wite
area_light <5, 0, 0>, <0, O, 5> 5, 5
adaptive 1
jitter
}
This is a white area light centered at <2,10,-3>. It is 5 units (along the x-axis) by 5 units (along the z-axis) in size
and has 25 (5*5) lights in it. We have specified adaptive 1 and jitter. We render this at 200x150 - A.

May 1999 POV-Ray 3.1g User Documentation Page 67

Right away we notice two things. The trace takes quite a bit longer than it did with a point or a spotlight and the
shadows are no longer sharp! They all have nice soft umbrae around them. Wait, it gets better.

Spotlights and cylinder lights can be area lights too! Remember those sharp shadows from the spotlights in our
scene? It would not make much sense to use a 5*5 array for a spotlight, but a smaller array might do a good job of
giving us just the right amount of umbra for a spotlight. Let's try it. We comment out the area light and change the
cylinder lights so that they read as follows:

I ight _source {
<2, 10, -3>
color White
spot | i ght
radi us 15
fallof f 18
ti ght ness 10
area_light <1, 0, 0> <0, 0, 1> 2, 2
adaptive 1
jitter
point _at <0, 0, 0>

—_—

i ght _source {

<10, 10, -1>

col or Red
spot | i ght

radi us 12

fallof f 14

ti ghtness 10
area_light <1, 0, 0> <0, 0, 1> 2, 2
adaptive 1

jitter

poi nt _at <2, 0, 0>

—_——

i ght _source {
<-12, 10, -1>
col or Blue
spot | i ght
radius 12
falloff 14
ti ghtness 10
area_light <1, 0, 0> <0, 0, 1> 2, 2
adaptive 1
jitter
point_at <-2, 0, 0>
}

We now have three area-spotlights, one unit square consisting of an array of four (2*2) lights, three different colors,
all shining on our scene. We render this at 200x150 - A. It appears to work perfectly. All our shadows have small,
tight umbrae, just the sort we would expect to find on an object under a real spotlight.

2.5.5 The Ambient Light Source

The ambient light source is used to simulate the effect of inter-diffuse reflection. If there wasn't inter-diffuse
reflection all areas not directly lit by a light source would be completely dark. POV-Ray uses the anmbi ent
keyword to determine how much light coming from the ambient light source is reflected by a surface.

By default the ambient light source, which emits its light everywhere and in all directions, is pure white (r gb
<1, 1, 1>). Changing its color can be used to create interesting effects. First of all the overall light level of the

May 1999 POV-Ray 3.1g User Documentation Page 68

scene can be adjusted easily. Instead of changing all ambient values in every finish only the ambient light source is
modified. By assigning different colors we can create nice effects like a moody reddish ambient lighting. For more
details about the ambient light source see "Ambient Light".

Below is an example of a red ambient light source.
gl obal _settings { ambient_light rgbh<l, 0, 0>}

2.5.6 Light Source Specials

2.5.6.1 Using Shadowless Lights

Light sources can be assigned the shadow ess keyword and no shadows will be cast due to its presence in a
scene. Sometimes, scenes are difficult to illuminate properly using the lights we have chosen to illuminate our
objects. It is impractical and unrealistic to apply a higher ambient value to the texture of every object in the scene.
So instead, we would place a couple of fill lights around the scene. Fill lights are simply dimmer lights with the
shadow ess keyword that act to boost the illumination of other areas of the scene that may not be lit well. Let's
try using one in our scene.

Remember the three colored area spotlights? We go back and un-comment them and comment out any other lights
we have made. Now we add the following:

light _source {
<0, 20, 0>
col or Gray50
shadow ess

}

This is a fairly dim light 20 units over the center of the scene. It will give a dim illumination to all objects including
the plane in the background. We render it and see.

2.5.6.2 Assigning an Object to a Light Source

Light sources are invisible. They are just a location where the light appears to be coming from. They have no true
size or shape. If we want our light source to be a visible shape, we can use the | ooks_| i ke keyword. We can
specify that our light source can look like any object we choose. When we use | ooks_1 i ke, then no_shadowis
applied to the object automatically. This is done so that the object will not block any illumination from the light
source. If we want some blocking to occur (as in a lampshade), it is better to simply use a union to do the same
thing. Let's add such an object to our scene. Here is a light bulb we have made just for this purpose:

#decl are Lightbulb = union {
nmer ge {
sphere { <0,0,0>,1 }
cylinder { <0,0,1> <0,0,0> 1
scal e <0.35, 0.35, 1.0>
translate 0.5*z
}
texture {
pi gnent {color rgb <1, 1, 1>}
finish {anbient .8 diffuse .6}
}
}
cylinder { <0,0,1> <0,0,0> 1
scale <0.4, 0.4, 0.5>
texture { Brass_Texture }
translate 1.5*z

}

rotate -90*x

May 1999 POV-Ray 3.1g User Documentation Page 69

scale .5

}
Now we add the light source:

light _source {
<0, 2, 0>
color Wite
| ooks like { Lightbulb }

}

Rendering this we see that a fairly believable light bulb now illuminates the scene. However, if we do not specify a
high ambient value, the light bulb is not lit by the light source. On the plus side, all of the shadows fall away from
the light bulb, just as they would in a real situation. The shadows are sharp, so let's make our bulb an area light:

[ight_source {
<0, 2, 0>
color Wite
area_light <1, 0, 0> <0, 1, 0> 2, 2
adaptive 1
jitter
| ooks _like { Lightbulb }
}

We note that we have placed this area light in the x-y-plane instead of the x-z-plane. We also note that the actual
appearance of the light bulb is not affected in any way by the light source. The bulb must be illuminated by some
other light source or by, as in this case, a high ambient value.

2.5.6.3 Using Light Fading

If it is realism we want, it is not realistic for the plane to be evenly illuminated off into the distance. In real life, light
gets scattered as it travels so it diminishes its ability to illuminate objects the farther it gets from its source. To
simulate this, POV-Ray allows us to use two keywords: f ade_di st ance, which specifies the distance at which
full illumination is achieved, and f ade_power , an exponential value which determines the actual rate of
attenuation. Let's apply these keywords to our fill light.

First, we make the fill light a little brighter by changing Gr ay50 to G- ay 75. Now we change that fill light as
follows:

light _source {
<0, 20, 0>
color Gray75
fade_di stance 5
fade_power 1
shadow ess

}

This means that the full value of the fill light will be achieved at a distance of 5 units away from the light source.
The fade power of 1 means that the falloff will be linear (the light falls of at a constant rate). We render this to see
the result.

That definitely worked! Now let's try a fade power of 2 and a fade distance of 10. Again, this works well. The
falloff is much faster with a fade power of 2 so we had to raise the fade distance to 10.

2.6 Simple Texture Options

The pictures rendered so far where somewhat boring regarding the appearance of the objects. Let's add some fancy
features to the texture.

May 1999 POV-Ray 3.1g User Documentation Page 70

2.6.1 Surface Finishes

One of the main features of a ray-tracer is its ability to do interesting things with surface finishes such as highlights
and reflection. Let's add a nice little Phong highlight (shiny spot) to a sphere. To do this we need to add af i ni sh
keyword followed by a parameter. We change the definition of the sphere to this:

sphere { <0, 1, 2>, 2
texture {
pigment { color Yellow} // Yellowis pre-defined in COLORS. | NC
finish { phong 1 }
}
}

We render the scene. The phong keyword adds a highlight the same color of the light shining on the object. It adds
a lot of credibility to the picture and makes the object look smooth and shiny. Lower values of phong will make the
highlight less bright (values should be between 0 and 1).

2.6.2 Adding Bumpiness

The highlight we have added illustrates how much of our perception depends on the reflective properties of an
object. Ray-tracing can exploit this by playing tricks on our perception to make us see complex details that aren't
really there.

Suppose we wanted a very bumpy surface on the object. It would be very difficult to mathematically model lots of
bumps. We can however simulate the way bumps look by altering the way light reflects off of the surface.
Reflection calculations depend on a vector called a surface normal. This is a vector which points away from the
surface and is perpendicular to it. By artificially modifying (or perturbing) this normal vector we can simulate
bumps. We change the scene to read as follows and render it:

sphere { <0, 1, 2>, 2
texture {
pi gment { color Yellow}
normal { bunps 0.4 scale 0.2 }
finish { phong 1}
}
}

This tells POV-Ray to use the bunps pattern to modify the surface normal. The value 0.4 controls the apparent
depth of the bumps. Usually the bumps are about 1 unit wide which doesn't work very well with a sphere of radius 2.
The scale makes the bumps 1/5th as wide but does not affect their depth.

2.6.3 Creating Color Patterns

We can do more than assigning a solid color to an object. We can create complex patterns in the pigment block like
in this example:

sphere { <0, 1, 2>, 2
texture {
pi gment {
wood
col or _map {
[0.0 col or DarkTan]
[0.9 col or Dar kBr own]
[1.0 col or VeryDar kBr own]
}
t urbul ence 0.05
scale <0.2, 0.3, 1>

May 1999 POV-Ray 3.1g User Documentation Page 71

finish { phong 1}
}
}

The keyword wood specifies a pigment pattern of concentric rings like rings in wood. The col or _map keyword
specifies that the color of the wood should blend from Dar kTan to Dar kBr own over the first 90% of the vein and
from Dar kBr own to Ver yDar kBr own over the remaining 10%. The t ur bul ence keyword slightly stirs up the
pattern so the veins aren't perfect circles and the scal e keyword adjusts the size of the pattern.

Most patterns are set up by default to give us one feature across a sphere of radius 1.0. A feature is very roughly
defined as a color transition. For example, a wood texture would have one band on a sphere of radius 1.0. In this
example we scale the pattern using the scal e keyword followed by a vector. In this case we scaled 0.2 in the x
direction, 0.3 in the y direction and the z direction is scaled by 1, which leaves it unchanged. Scale values larger than
one will stretch an element. Scale values smaller than one will squish an element. A scale value of one will leave an
element unchanged.

2.6.4 Pre-defined Textures

POV-Ray has some very sophisticated textures pre-defined in the standard include files gl ass. i nc,

nmet al s. i nc,stones. i nc and woods. i nc. Some are entire textures with pigment, normal and/or finish
parameters already defined. Some are just pigments or just finishes. We change the definition of our sphere to the
following and then re-render it:

sphere { <0, 1, 2>, 2

texture {
pi gment {
DMFWod4 /1 pre-defined in textures.inc
scale 4 /1l scale by the sanme anmount in all

/!l directions

}
finish { Shiny } // pre-defined in finish.inc
}
}

The pigment identifier DMFWb0d4 has already been scaled down quite small when it was defined. For this example
we want to scale the pattern larger. Because we want to scale it uniformly we can put a single value after the scale
keyword rather than a vector of x, y, z scale factors.

We look through the file t ext ur es. i nc to see what pigments and finishes are defined and try them out. We just
insert the name of the new pigment where DMFWb0d4 is now or try a different finish in place of Shi ny and re-
render our file.

Here is an example of using a complete texture identifier rather than just the pieces.

sphere { <0, 1, 2>, 2
texture { PinkAl abaster }
}

2.7 Advanced Texture Options

The extremely powerful texturing ability is one thing that really sets POV-Ray apart from other raytracers. So far we
have not really tried anything too complex but by now we should be comfortable enough with the program's syntax
to try some of the more advanced texture options.

Obviously, we cannot try them all. It would take a tutorial a lot more pages to use every texturing option available in

POV-Ray. For this limited tutorial, we will content ourselves to just trying a few of them to give an idea of how
textures are created. With a little practice, we will soon be creating beautiful textures of our own.

May 1999 POV-Ray 3.1g User Documentation Page 72

Note that early versions of POV-Ray made a distinction between pigment and normal patterns, i. e. patterns that
could be used inside a nor mal or pi gnent statement. With POV-Ray 3.0 this restriction was removed so that all
patterns listed in section "Patterns™ can be used as a pigment or normal pattern.

2.7.1 Pigments

Every surface must have a color. In POV-Ray this color is called a pi gnent . It does not have to be a single color.
It can be a color pattern, a color list or even an image map. Pigments can also be layered one on top of the next so
long as the uppermost layers are at least partially transparent so the ones beneath can show through. Let's play
around with some of these kinds of pigments.

We create a file called t exdeno. pov and edit it as follows:

#i ncl ude "col ors.inc"
canera ({
| ocation <1, 1, -7>
| ook_at O
angl e 36
}
[ight_source { <1000, 1000, -1000> White }
plane { vy, -1.5
pi gment { checker Green, Wiite }

}
sphere { <0,0,0>, 1
pi gment { Red }

Giving this file a quick test render at 200x150 - A we see that it is a simple red sphere against a green and white
checkered plane. We will be using the sphere for our textures.

2.7.1.1 Using Color List Pigments

Before we begin we should note that we have already made one kind of pigment, the color list pigment. In the
previous example we have used a checkered pattern on our plane. There are two other kinds of color list pigments,
bri ck and hexagon. Let's quickly try each of these. First, we change the plane's pigment as follows:

pi gment { hexagon Green, \Wite, Yellow}

Rendering this we see a three-color hexagonal pattern. Note that this pattern requires three colors. Now we change
the pigment to...

pigment { brick Gray75, Red rotate -90*x scale .25 }

Looking at the resulting image we see that the plane now has a brick pattern. We note that we had to rotate the
pattern to make it appear correctly on the flat plane. This pattern normally is meant to be used on vertical surfaces.
We also had to scale the pattern down a bit so we could see it more easily. We can play around with these color list
pigments, change the colors, etc. until we get a floor that we like.

2.7.1.2 Using Pigment and Patterns

Let's begin texturing our sphere by using a pattern and a color map consisting of three colors. We replace the
pigment block with the following.

pi gment {
gradi ent x
color_map {
[0.00 col or Red]
[0.33 col or Blue]
[0.66 color Yellow

May 1999 POV-Ray 3.1g User Documentation Page 73

[1.00 col or Red]

}
}

Rendering this we see that the gr adi ent pattern gives us an interesting pattern of vertical stripes. We change the
gradient direction to y. The stripes are horizontal now. We change the gradient direction to z. The stripes are now
more like concentric rings. This is because the gradient direction is directly away from the camera. We change the
direction back to x and add the following to the pigment block.

pi gment {

gradi ent x

color_map {
[0.00 col or Red]
[0.33 col or Blue]
[0.66 color Yellow
[1.00 col or Red]

}

rotate -45*z // <- add this |ine

}

The vertical bars are now slanted at a 45 degree angle. All patterns can be rotated, scaled and translated in this
manner. Let's now try some different types of patterns. One at a time, we substitute the following keywords for

gr adi ent x and render to see the result: bozo, mar bl e, agat e, grani t e, | eopard, spot t ed and wood
(if we like we can test all patterns listed in section "Patterns").

Rendering these we see that each results in a slightly different pattern. But to get really good results each type of
pattern requires the use of some pattern modifiers.

2.7.1.3 Using Pattern Modifiers

Let's take a look at some pattern modifiers. First, we change the pattern type to bozo. Then we add the following
change.

pi gment {
bozo
frequency 3 /1l <- add this line
color_map {
[0.00 col or Red]
[0.33 col or Blue]
[0.66 color Yellow
[1.00 col or Red]

}

rotate -45*z

}

The f r equency modifier determines the number of times the color map repeats itself per unit of size. This change
makes the boz o pattern we saw earlier have many more bands in it. Now we change the pattern type to mar bl e.
When we rendered this earlier, we saw a banded pattern similar to gr adi ent y that really did not look much like
marble at all. This is because marble really is a kind of gradient and it needs another pattern modifier to look like
marble. This modifier is called t ur bul ence. We change the line f r equency 3tot urbul ence 1 and render
again. That's better! Now let's put f r equency 3 back in right after the turbulence and take another look. Even
more interesting!

But wait, it gets better! Turbulence itself has some modifiers of its own. We can adjust the turbulence several ways.
First, the float that follows the t ur bul ence keyword can be any value with higher values giving us more
turbulence. Second, we can use the keywords orrega, | anbda and oct aves to change the turbulence parameters.
Let's try this now:

pi gment {

May 1999 POV-Ray 3.1g User Documentation Page 74

mar bl e

turbul ence 0.5

| anbda 1.5

onega 0.8

octaves 5

frequency 3

col or _map {
[0.00 col or Red]
[0.33 col or Blue]
[0.66 color Yellow
[1.00 col or Red]

rotate 45*z

}

Rendering this we see that the turbulence has changed and the pattern looks different. We play around with the
numerical values of turbulence, lambda, omega and octaves to see what they do.

2.7.1.4 Using Transparent Pigments and Layered Textures

Pigments are described by numerical values that give the rgb value of the color to be used (like col or

r gb<1, 0, 0> giving us a red color). But this syntax will give us more than just the rgb values. We can specify
filtering transparency by changing it as follows: col or rgbf <1, 0, 0, 1>. The fstands forfi | t er, POV-Ray's
word for filtered transparency. A value of one means that the color is completely transparent, but still filters the light
according to what the pigment is. In this case, the color will be a transparent red, like red cellophane.

There is another kind of transparency in POV-Ray. It is called transmittance or non-filtering transparency (the
keyword ist ransmi t). Itis different fromfi | t er inthat it does not filter the light according to the pigment
color. It instead allows all the light to pass through unchanged. It can be specified like this: r gbt <1, 0, 0, 1>.

Let's use some transparent pigments to create another kind of texture, the layered texture. Returning to our previous
example, declare the following texture.

#decl are LandArea = texture {
pi gment {
agat e
turbul ence 1
| anbda 1.5
onega .8
octaves 8
col or _map {

[0.00 color rgb <.5, .25, .15>]
[0.33 color rgh <. 1, .5, .4>]
[0.86 color rgh <.6, .3, .1>]
[1.00 color rgb <.5, .25, .15>]

}
}
}

This texture will be the land area. Now let's make the oceans by declaring the following.

#decl are OceanArea = texture {
pi gment {
bozo
turbul ence .5
| anbda 2
col or _map {
[0.00, 0.33 color rgb <0, 0, 1>

May 1999 POV-Ray 3.1g User Documentation Page 75

color rgh <0, 0, 1>]

[0.33, 0.66 color rgbf <1, 1, 1, 1>
color rgbf <1, 1, 1, 1>]

[0.66, 1.00 color rgb <0, 0, 1>
color rgh <0, 0, 1>]

}
}
}

Note how the ocean is the opaque blue area and the land is the clear area which will allow the underlying texture to
show through.

Now, let's declare one more texture to simulate an atmosphere with swirling clouds.

#decl are Cl oudArea = texture {
pi gment {

agat e

turbul ence 1

| anbda 2

frequency 2

color_map {
[0.0 color rgbf <1, 1, 1, 1>]
[0.5 color rgbf <1, 1, 1, .35>]
[1.0 color rgbf <1, 1, 1, 1>]

}

}
}

Now apply all of these to our sphere.

sphere { <0,0,0>, 1
texture { LandArea }
texture { CceanArea }
texture { O oudArea }

}

We render this and have a pretty good rendition of a little planetoid. But it could be better. We don't particularly like
the appearance of the clouds. There is a way they could be done that would be much more realistic.

2.7.1.5 Using Pigment Maps

Pigments may be blended together in the same way as the colors in a color map using the same pattern keywords
and a pi gnent _map. Let's just give it a try.

We add the following declarations, making sure they appear before the other declarations in the file.

#decl are O oudsl = pignment ({
bozo
turbul ence 1
col or _map {
[0.0 color Wiite filter 1]
[0.5 color Wite]
[1.0 color Wite filter 1]

}

}
#decl are C ouds2 = pignment {
agate
turbul ence 1
col or _map {
[0.0 color Wite filter 1]

May 1999 POV-Ray 3.1g User Documentation Page 76

[0.5 color Wite]
[1.0 color Wite filter 1]
}
}
#decl are C ouds3 = pignment {
nmar bl e
turbul ence 1
col or _map {
[0.0 color Wite filter 1]
[0.5 color Wite]
[1.0 color Wite filter 1]
}
}
#decl are C ouds4 = pigment {
granite
turbul ence 1
col or _map {
[0.0 color Wite filter 1]
[0.5 color Wite]
[1.0 color Wite filter 1]
}
}
Now we use these declared pigments in our cloud layer on our planetoid. We replace the declared cloud layer with.
#decl are Cl oudArea = texture {
pi gment {
gradient y

pi gment _map {
[0.00 d oudsi]
[0.25 d ouds?]
[0.50 d ouds3]
[0.75 d ouds4]
[1.00 d oudsl]

}

}
}

We render this and see a remarkable pattern that looks very much like weather patterns on the planet earth. They are
separated into bands, simulating the different weather types found at different latitudes.

2.7.2 Normals

Objects in POV-Ray have very smooth surfaces. This is not very realistic so there are several ways to disturb the
smoothness of an object by perturbing the surface normal. The surface normal is the vector that is perpendicular to
the angle of the surface. By changing this normal the surface can be made to appear bumpy, wrinkled or any of the
many patterns available. Let's try a couple of them.

2.7.2.1 Using Basic Normal Modifiers

We comment out the planetoid sphere for now and, at the bottom of the file, create a new sphere with a simple,
single color texture.

sphere { <0,0,0>, 1
pigment { Gay75 }
normal { bunps 1 scale .2}

}

Page 77

May 1999 POV-Ray 3.1g User Documentation

Here we have added a nor mal block in addition to the pi gnent block (note that these do not have to be included
inat ext ur e block unless they need to be transformed together or need to be part of a layered texture). We render
this to see what it looks like. Now, one at a time, we substitute for the keyword bunps the following keywords:
dent s,wr i nkl es, ri ppl es and waves (we can also use any of the patterns listed in "Patterns"). We render
each to see what they look like. We play around with the float value that follows the keyword. We also experiment
with the scale value.

For added interest, we change the plane texture to a single color with a normal as follows.

plane { y, -1.5
pi gment { color rgb <.65, .45, .35>}
normal { dents .75 scale .25 }

}
2.7.2.2 Blending Normals

Normals can be layered similar to pigments but the results can be unexpected. Let's try that now by editing the
sphere as follows.

sphere { <0,0,0>, 1

pigment { Gray75 }
normal { radial frequency 10 }
normal { gradient y scale .2}

}

As we can see, the resulting pattern is neither a radial nor a gradient. It is instead the result of first calculating a
radial pattern and then calculating a gradient pattern. The results are simply additive. This can be difficult to control
so POV-Ray gives the user other ways to blend normals.

One way is to use normal maps. A normal map works the same way as the pigment map we used earlier. Let's
change our sphere texture as follows.

sphere { <0,0,0>, 1
pigment { Gray75 }
nor mal {
gradient y
frequency 3
turbul ence .5
normal _map {
[0.00 granite]
[0.25 spotted turbul ence . 35]
[0.50 marble turbul ence . 5]
[0.75 bozo turbul ence . 25]
[1.00 granite]
}
}
}

Rendering this we see that the sphere now has a very irregular bumpy surface. The gradient pattern type separates
the normals into bands but they are turbulated, giving the surface a chaotic appearance. But this give us an idea.

Suppose we use the same pattern for a normal map that we used to create the oceans on our planetoid and applied it
to the land areas. Does it follow that if we use the same pattern and modifiers on a sphere the same size that the
shape of the pattern would be the same? Wouldn't that make the land areas bumpy while leaving the oceans smooth?
Let's try it. First, let's render the two spheres side-by-side so we can see if the pattern is indeed the same. We un-
comment the planetoid sphere and make the following changes.

sphere { <0,0,0>, 1
texture { LandArea }
texture { CceanArea }

May 1999 POV-Ray 3.1g User Documentation Page 78

/l/texture { AoudArea } // <-comment this out
translate -x /] <- add this transfornmation

}

Now we change the gray sphere as follows.

sphere { <0,0,0>, 1
pigment { Gray75 }
nor mal {
bozo
turbul ence .5
| anbda 2
normal _map {
[0.4 dents .15 scale .01]
[0.6 agate turbul ence 1]
[1.0 dents .15 scale .01]
}
}
translate x // <- add this transformation

}

We render this to see if the pattern is the same. We see that indeed it is. So let's comment out the gray sphere and
add the nor mal block it contains to the land area texture of our planetoid. We remove the transformations so that
the planetoid is centered in the scene again.

#decl are LandArea = texture {
pi gment {
agat e
turbul ence 1
| ambda 1.5
onega .8
octaves 8
col or _map {

[0.00 color rgb <.5, .25, .15>]
[0.33 color rgh <. 1, .5, .4>]
[0.86 color rgh <.6, .3, .1>]
[1.00 color rgb <.5, .25, .15>]
}
}
nor mal {
bozo
turbul ence .5
| anbda 2
normal _map {
[0.4 dents .15 scale .01]
[0.6 agate turbul ence 1]
[1.0 dents .15 scale .01]
}
}

}

Looking at the resulting image we see that indeed our idea works! The land areas are bumpy while the oceans are
smooth. We add the cloud layer back in and our planetoid is complete.

There is much more that we did not cover here due to space constraints. On our own, we should take the time to
explore slope maps, average and bump maps.

May 1999 POV-Ray 3.1g User Documentation Page 79

2.7.3 Finishes

The final part of a POV-Ray texture is the f i ni sh. It controls the properties of the surface of an object. It can
make it shiny and reflective, or dull and flat. It can also specify what happens to light that passes through transparent
pigments, what happens to light that is scattered by less-than-perfectly-smooth surfaces and what happens to light
that is reflected by surfaces with thin-film interference properties. There are twelve different properties available in
POV-Ray to specify the finish of a given object. These are controlled by the following keywords: anbi ent ,

di ffuse,brilliance, phong,specul ar,nmetallic,reflection,crandandiri descence. Let's
design a couple of textures that make use of these parameters.

2.7.3.1 Using Ambient

Since objects in POV-Ray are illuminated by light sources, the portions of those objects that are in shadow would be
completely black were it not for the first two finish properties, anbi ent and di f f use. Ambient is used to
simulate the light that is scattered around the scene that does not come directly from a light source. Diffuse
determines how much of the light that is seen comes directly from a light source. These two keywords work together
to control the simulation of ambient light. Let's use our gray sphere to demonstrate this. Let's also change our plane
back to its original green and white checkered pattern.

pl ane {y,-1.5
pi gment {checker Green, Wite}

sphere { <0,0,0>, 1
pi gment { G ay75}

finish {
anmbient .2
diffuse .6

}

In the above example, the default values for ambient and diffuse are used. We render this to see what the effect is
and then make the following change to the finish.

ambient 0
diffuse O

The sphere is black because we have specified that none of the light coming from any light source will be reflected
by the sphere. Let's change di f f use back to the default of 0.6.

Now we see the gray surface color where the light from the light source falls directly on the sphere but the shaded
side is still absolutely black. Now let's change di f f use to 0.3 and anbi ent to 0.3.

The sphere now looks almost flat. This is because we have specified a fairly high degree of ambient light and only a
low amount of the light coming from the light source is diffusely reflected towards the camera. The default values of
anbi ent and di f f use are pretty good averages and a good starting point. In most cases, an ambient value of 0.1
... 0.2 is sufficient and a diffuse value of 0.5 ... 0.7 will usually do the job. There are a couple of exceptions. If we
have a completely transparent surface with high refractive and/or reflective values, low values of both ambient and
diffuse may be best. Here is an example:

sphere { <0,0,0>, 1
pigment { Wiite filter 1}
finish {
anbient 0
diffuse 0O
reflection .25
specul ar 1
roughness . 001

interior{ior 1.33}

May 1999 POV-Ray 3.1g User Documentation Page 80

}

This is glass, obviously. Glass is a material that takes nearly all of its appearance from its surroundings. Very little
of the surface is seen because it transmits or reflects practically all of the light that shines on it. See gl ass. i nc for
some other examples.

If we ever need an object to be completely illuminated independently of the lighting situation in a given scene we
can do this artificially by specifying an anbi ent value of 1 and a di f f use value of 0. This will eliminate all
shading and simply give the object its fullest and brightest color value at all points. This is good for simulating
objects that emit light like light bulbs and for skies in scenes where the sky may not be adequately lit by any other
means.

Let's try this with our sphere now.

sphere { <0,0,0>, 1
pigment { Wite }

finish {
anbient 1
diffuse 0
}

}

Rendering this we get a blinding white sphere with no visible highlights or shaded parts. It would make a pretty
good streetlight.

2.7.3.2 Using Surface Highlights

In the glass example above, we noticed that there were bright little hotspots on the surface. This gave the sphere a
hard, shiny appearance. POV-Ray gives us two ways to specify surface specular highlights. The first is called Phong
highlighting. Usually, Phong highlights are described using two keywords: phong and phong_si ze. The float
that follows phong determines the brightness of the highlight while the float following phong_si ze determines
its size. Let's try this.

sphere { <0,0,0>, 1
pi gment { Gray50 }

finish {
anbient .2
diffuse .6
phong .75

phong_si ze 25

}
}

Rendering this we see a fairly broad, soft highlight that gives the sphere a kind of plastic appearance. Now let's
change phong_si ze to 150. This makes a much smaller highlight which gives the sphere the appearance of being
much harder and shinier.

There is another kind of highlight that is calculated by a different means called specular highlighting. It is specified
using the keyword specul ar and operates in conjunction with another keyword called r oughness. These two
keywords work together in much the same way as phong and phong_si ze to create highlights that alter the
apparent shininess of the surface. Let's try using specular in our sphere.
sphere { <0,0,0>, 1
pi gment { Gray50 }

finish {
anmbient .2
diffuse .6

specul ar .75
roughness .1

May 1999 POV-Ray 3.1g User Documentation Page 81

}
}

Looking at the result we see a broad, soft highlight similar to what we had when we used phong_si ze of 25.
Change r oughness to .001 and render again. Now we see a small, tight highlight similar to what we had when we
used phong_si ze of 150. Generally speaking, specular is slightly more accurate and therefore slightly more
realistic than phong but you should try both methods when designing a texture. There are even times when both
phong and specular may be used on a finish.

2.7.3.3 Using Reflection and Metallic

There is another surface parameter that goes hand in hand with highlights, r ef | ect i on. Surfaces that are very
shiny usually have a degree of reflection to them. Let's take a look at an example.
sphere { <0,0,0>, 1
pi gment { Gray50 }

finish {
anbient .2
diffuse .6

specul ar .75
roughness .001
reflection .5

}

We see that our sphere now reflects the green and white checkered plane and the black background but the gray
color of the sphere seems out of place. This is another time when a lower diffuse value is needed. Generally, the
higher r ef | ecti on is the lower di f f use should be. We lower the diffuse value to 0.3 and the ambient value to
0.1 and render again. That is much better. Let's make our sphere as shiny as a polished gold ball bearing.

sphere { <0,0,0>, 1
pi gment { BrightGold }

finish {
ambient .1
di ffuse .1

specul ar 1
roughness .001
reflection .75
}
}

That is very close but there is something wrong with the highlight. To make the surface appear more like metal the
keyword net al | i ¢ is used. We add it now to see the difference.

sphere { <0,0,0>, 1
pi gment { BrightCGold }

finish {
ambient .1
diffuse .1

specul ar 1
roughness .001
reflection .75
metallic

}

We see that the highlight has taken on the color of the surface rather than the light source. This gives the surface a
more metallic appearance.

May 1999 POV-Ray 3.1g User Documentation Page 82

2.7.3.4 Using Iridescence

Iridescence is what we see on the surface of an oil slick when the sun shines on it. The rainbow effect is created by
something called thin-film interference (read section "lIridescence" for details). For now let's just try using it.
Iridescence is specified by the i ri d statement and three values: amount, t hi ckness and t ur bul ence. The
amount is the contribution to the overall surface color. Usually 0.1 to 0.5 is sufficient here. The thickness affects the
"busyness" of the effect. Keep this between 0.25 and 1 for best results. The turbulence is a little different from
pigment or normal turbulence. We cannot set oct aves, | anbda or omega but we can specify an amount which
will affect the thickness in a slightly different way from the thickness value. Values between 0.25 and 1 work best
here too. Finally, iridescence will respond to the surface normal since it depends on the angle of incidence of the
light rays striking the surface. With all of this in mind, let's add some iridescence to our glass sphere.

sphere { <0,0,0>, 1
pigment { Wiite filter 1}

finish {
ambient .1
diffuse .1

reflection .2
specul ar 1
roughness . 001
irid {

0.35

t hi ckness .5

turbul ence .5

}

}

i nterior{
ior 1.5
fade_di stance 5
fade_power 1
caustics 1

}

}

We try to vary the values for amount, thickness and turbulence to see what changes they make. We also try to add a
nor mal block to see what happens.

2.7.4 Working With Pigment Maps

Let's look at the pigment map. We must not confuse this with a color map, as color maps can only take individual
colors as entries in the map, while pigment maps can use entire other pigment patterns. To get a feel for these, let's
begin by setting up a basic plane with a simple pigment map. Now, in the following example, we are going to
declare each of the pigments we are going to use before we actually use them. This isn't strictly necessary (we could
put an entire pigment description in each entry of the map) but it just makes the whole thing more readable.

/1 sinple Black on Wite checkboard... it's a classic
#decl are Pignmentl = pigment {

checker col or Black color Wite

scale .1

/1 kind of a "psychedelic rings" effect
#decl are Pignment2 = pigment {
wood
color_map {
[0.0 Red]
[0.3 Yellow]
[0.6 Geen]
[1.0 Blue]

May 1999 POV-Ray 3.1g User Documentation Page 83

}
}
plane { -z, O
pi gment {
gradi ent x
pi gment _map {
[0.0 Pigmentl]
[0.5 Pigment2]
[1.0 Pigmentl]
}
}
}

Okay, what we have done here is very simple, and probably quite recognizable if we have been working with color
maps all along anyway. All we have done is substituted a pigment map where a color map would normally go, and
as the entries in our map, we have referenced our declared pigments. When we render this example, we see a pattern
which fades back and forth between the classic checkerboard, and those colorful rings. Because we fade from
Pigment1 to Pigment2 and then back again, we see a clear blending of the two patterns at the transition points. We
could just as easily get a sudden transition by amending the map to read.

pi gment _map {
[0.0 Pigmentl]
[0.5 Pigmentl]
[0.5 Pigment2]
[1.0 Pigment2]

}

Blending individual pigment patterns is just the beginning.

2.7.5 Working With Normal Maps

For our next example, we replace the plane in the scene with this one.

plane { -z, O
pigment { Wite }
nor mal {
gradi ent x
normal _map {
[0.0 bunmps 1 scale .1]
[1.0 ripples 1 scale .1]
}
}
}

First of all, we have chosen a solid white color to show off all bumping to best effect. Secondly, we notice that our
map blends smoothly from all bumps at 0.0 to all ripples at 1.0, but because this is a default gradient, it falls off
abruptly back to bumps at the beginning of the next cycle. We Render this and see just enough sharp transitions to
clearly see where one normal gives over to another, yet also an example of how two normal patterns look while they
are smoothly blending into one another.

The syntax is the same as we would expect. We just changed the type of map, moved it into the normal block and
supplied appropriate bump types. It is important to remember that as of POV-Ray 3, all patterns that work with
pigments work as normals as well (and vice versa, of course) so we could just as easily have blended from wood to
granite, or any other pattern we like. We experiment a bit and get a feel for what the different patterns look like.

After seeing how interesting the various normals look blended, we might like to see them completely blended all the
way through rather than this business of fading from one to the next. Well, that is possible too, but we would be
getting ahead of ourselves. That is called the aver age function, and we will return to it a little bit further down the

page.

May 1999 POV-Ray 3.1g User Documentation Page 84

2.7.6 Working With Texture Maps

We know how to blend colors, pigment patterns, and normals, and we are probably thinking what about finishes?
What about whole textures? Both of these can be kind of covered under one topic. While there is no finish map per
se, there are texture maps, and we can easily adapt these to serve as finish maps, simply by putting the same pigment
and/or normal in each of the texture entries of the map. Here is an example. We eliminate the declared pigments we
used before and the previous plane, and add the following.

#decl are Texturel = texture {
pigment { Gey }
finish { reflection 1}

#decl are Texture2 = texture {
pigment { Gey }
finish { reflection 0 }

}
cylinder { <2, 5, -2> <-2, -5 -2> 1
pi gment { Blue }

plane { -z, O
rotate y * 30
texture {
gradient y
texture_map {
[0.0 Texturel]
[0.4 Texturel]
[0.6 Texture2]
[1.0 Texture2]
}
scale 2
}
}

Now, what have we done here? The background plane alternates vertically between two textures, identical except
for their finishes. When we render this, the cylinder has a reflection part of the way down the plane, and then stops
reflecting, then begins and then stops again, in a gradient pattern down the surface of the plane. With a little
adaptation, this could be used with any pattern, and in any number of creative ways, whether we just wanted to give
various parts of an object different finishes, as we are doing here, or whole different textures altogether.

One might ask: if there is a texture map, why do we need pigment and normal maps? Fair question. The answer:
speed of calculation. If we use a texture map, for every in-between point, POV-Ray must make multiple calculations
for each texture element, and then run a weighted average to produce the correct value for that point. Using just a
pigment map (or just a normal map) decreases the overall number of calculations, and our texture renders a bit faster
in the bargain. As a rule of thumb: we use pigment or normal maps where we can and only fall back on texture maps
if we need the extra flexibility.

2.7.7 Working With List Textures

If we have followed the corresponding tutorials on simple pigments, we know that there are three patterns called
color list patterns, because rather than using a color map, these simple but useful patterns take a list of colors
immediately following the pattern keyword. We're talking about checker, hexagon, and, new to POV-Ray 3, the
brick pattern.

Naturally they also work with whole pigments, normals, and entire textures, just as the other patterns do above. The
only difference is that we list entries in the pattern (as we would do with individual colors) rather than using a map
of entries. Here is an example. We strike the plane and any declared pigments we had left over in our last example,
and add the following to our basic file.

May 1999 POV-Ray 3.1g User Documentation Page 85

#decl are Pignentl = pignment {

hexagon
color Yellow color Geen color Gey
scale .1
}
#decl are Pignent2 = pignment {
checker
col or Red color Blue
scale .1
}
#decl are Pignent3 = pignment {
brick
col or White col or Bl ack
rotate -90*x
scale .1
}
box { -5, 5
pi gment {
hexagon
pi gment {Pi gment 1}
pi gment {Pi gment 2}
pi gment {Pi gment 3}
rotate 90*x
}
}

We begin by declaring an example of each of the color list patterns as individual pigments. Then we use the hexagon
pattern as a pigment list pattern, simply feeding it a list of pigments rather than colors as we did above. There are
two rotate statements throughout this example, because bricks are aligned along the z-direction, while hexagons
align along the y-direction, and we wanted everything to face toward the camera we originally declared out in the -z-
direction so we can really see the patterns within patterns effect here.

Of course color list patterns used to be only for pigments, but as of POV-Ray 3, everything that worked for pigments
can now also be adapted for normals or entire textures. A couple of quick examples might look like

nor mal {
brick
normal { granite .1}
normal { bunps 1 scale .1}

}
or...

texture {
checker
texture { Gold _Metal }
texture { Silver_Metal }

}
2.7.8 What About Tiles?

In earlier versions of POV-Ray, there was a texture pattern called t i | es. By simply using a checker texture pattern
(as we just saw above), we can achieve the same thing as tiles used to do, so it is now obsolete. It is still supported
by POV-Ray 3 for backwards compatibility with old scene files, but now is a good time to get in the habit of using a
checker pattern instead.

May 1999 POV-Ray 3.1g User Documentation Page 86

2.7.9 Average Function

Now things get interesting. Above, we began to see how pigments and normals can fade from one to the other when
we used them in maps. But how about if we want a smooth blend of patterns all the way through? That is where a
new feature called aver age can come in very handy. Average works with pigment, normal, and texture maps,
although the syntax is a little bit different, and when we are not expecting it, the change can be confusing. Here is a
simple example. We use our standard includes, camera and light source from above, and enter the following object.

plane { -z, O
pigment { Wite }
nor mal {

aver age
normal _map {
[gradient x]
[gradient y]
}
}
}

What we have done here is pretty self explanatory as soon as we render it. We have combined a vertical with a
horizontal gradient bump pattern, creating crisscrossing gradients. Actually, the crisscrossing effect is a smooth
blend of gradient x with gradient y all the way across our plane. Now, what about that syntax difference?

We see how our normal map has changed from earlier examples. The floating point value to the left-hand side of
each map entry has been removed. That value usually helps in procedurally mapping each entry to the pattern we
have selected, but average is a smooth blend all the way through, not a pattern, so it cannot use those values. In fact,
including them may sometimes lead to unexpected results, such as entries being lost or misrepresented in some way.
To ensure that we'll get the pattern blend we anticipate, we leave off the floating point value.

2.7.10 Working With Layered Textures

With the multitudinous colors, patterns, and options for creating complex textures in POV-Ray, we can easily
become deeply engrossed in mixing and tweaking just the right textures to apply to our latest creations. But as we
go, sooner or later there is going to come that special texture. That texture that is sort of like wood, only varnished,
and with a kind of spotty yellow streaking, and some vertical gray flecks, that looks like someone started painting
over it all, and then stopped, leaving part of the wood visible through the paint.

Only... now what? How do we get all that into one texture? No pattern can do that many things. Before we panic and
say image map there is at least one more option: layered textures.

With layered textures, we only need to specify a series of textures, one after the other, all associated with the same
object. Each texture we list will be applied one on top of the other, from bottom to top in the order they appear.

It is very important to note that we must have some degree of transparency (filter or transmit) in the pigments of our
upper textures, or the ones below will get lost underneath. We won't receive a warning or an error - technically it is
legal to do this: it just doesn't make sense. It is like spending hours sketching an elaborate image on a bare wall, then
slapping a solid white coat of latex paint over it.

Let's design a very simple object with a layered texture, and look at how it works. We create a file called
LAYTEX. POV and add the following lines.

#i ncl ude "col ors.inc"
#i ncl ude "textures.inc"
canera ({
| ocation <0, 5, -30>
| ook_at <0, 0, 0>
}
[ight_source { <-20, 30, -50> color Wite }

May 1999 POV-Ray 3.1g User Documentation Page 87

plane { y, 0 pignment { checker color Green color Yellow } }
background { rgb <. 7, .7, 1>}
box { <-10, 0, -10>, <10, 10, 10>

texture {
Silver_Metal // a metal object
nor mal { /1 ... which has suffered a beating
dents 2
scale 1.5

} /'/ (end of base texture)
texture { // ... has sonme flecks of rust
pi gment {
granite
color_map {

[0.0 rgb <.2, 0, 0>]
[0.2 color Brown]
[0.2 rgbt <1, 1, 1, 1>]
[1.0 rgbt <1, 1, 1, 1>]
}
frequency 16
}
} // (end rust fleck texture)
texture { // ... and some sooty bl ack marks
pi gment {
bozo

color_map {

[0.0 color Black]
[0.2 color rgbht <0, 0, 0, .5>]
[0.4 color rgbht <5, .5, .5, .5>]
[0.5 color rgbt <1, 1, 1, 1>]
[1.0 color rgbt <1, 1, 1, 1>]

}

scale 3

} /'/ (end of sooty mark texture)
} // (end of box declaration)

Whew. This gets complicated, so to make it easier to read, we have included comments showing what we are doing
and where various parts of the declaration end (so we don't get lost in all those closing brackets!). To begin, we
created a simple box over the classic checkerboard floor, and give the background sky a pale blue color. Now for the
fun part...

To begin with we made the box use the Si | ver _Met al texture as declared in textures.inc (for bonus points, look
up t ext ur es. i nc and see how this standard texture was originally created sometime). To give it the start of its
abused state, we added the dents normal pattern, which creates the illusion of some denting in the surface as if our
mysterious metal box had been knocked around quite a bit.

The flecks of rust are nothing but a fine grain granite pattern fading from dark red to brown which then abruptly
drops to fully transparent for the majority of the color map. True, we could probably come up with a more realistic
pattern of rust using pigment maps to cluster rusty spots, but pigment maps are a subject for another tutorial section,
S0 let's skip that just now.

Lastly, we have added a third texture to the pot. The randomly shifting boz o texture gradually fades from
blackened centers to semi-transparent medium gray, and then ultimately to fully transparent for the latter half of its
color map. This gives us a look of sooty burn marks further marring the surface of the metal box. The final result
leaves our mysterious metal box looking truly abused, using multiple texture patterns, one on top of the other, to
produce an effect that no single pattern could generate!

May 1999 POV-Ray 3.1g User Documentation Page 88

2.7.10.1 Declaring Layered Textures

In the event we want to reuse a layered texture on several objects in our scene, it is perfectly legal to declare a
layered texture. We won't repeat the whole texture from above, but the general format would be something like this:

#decl are Abused Metal =
texture { /* insert your base texture here... */ }
texture { /* and your rust flecks here... */ }
texture { /* and of course, your sooty burn marks here */ }

POV-Ray has no problem spotting where the declaration ends, because the textures follow one after the other with
no objects or directives in between. The layered texture to be declared will be assumed to continue until it finds
something other than another texture, so any humber of layers can be added in to a declaration in this fashion.

One final word about layered textures: whatever layered texture we create, whether declared or not, we must not
leave off the texture wrapper. In conventional single textures a common shorthand is to have just a pigment, or just a
pigment and finish, or just a normal, or whatever, and leave them outside of a texture statement. This shorthand does
not extend to layered textures. As far as POV-Ray is concerned we can layer entire textures, but not individual
pieces of textures. For example

#decl are Bad_Texture =
texture { /* insert your base texture here... */ }
pigment { Red filter .5}
normal { bumps 1 }

will not work. The pigment and the normal are just floating there without being part of any particular texture. Inside
an object, with just a single texture, we can do this sort of thing, but with layered textures, we would just generate an
error whether inside the object or in a declaration.

2.7.10.2 Another Layered Textures Example

To further explain how layered textures work another example is described in detail. A tablecloth is created to be
used in a picnic scene. Since a simple red and white checkered cloth looks entirely too new, too flat, and too much
like a tiled floor, layered textures are used to stain the cloth.

We're going to create a scene containing four boxes. The first box has that plain red and white texture we started
with in our picnic scene, the second adds a layer meant to realistically fade the cloth, the third adds some wine
stains, and the final box adds a few wrinkles (not another layer, but we must note when and where adding changes to
the surface normal have an effect in layered textures).

We start by placing a camera, some lights, and the first box. At this stage, the texture is plain tiling, not layered. See
filel ayeredl. pov.

#i ncl ude "col ors.inc"
camera f{
| ocati on <0, 0, -6>
| ook_at <0, 0, 0>
}
light _source { <-20, 30, -100> color Wite }
light source { <10, 30, -10> color Wiite }
light_source { <0, 30, 10> color Wite }
#decl are PLAIN TEXTURE =
/1 red/white check
texture {
pi gment {
checker
col or rgb<1.000, 0.000, 0.000>
col or rgh<1.000, 1.000, 1.000>
scal e <0. 2500, 0.2500, 0.2500>

May 1999 POV-Ray 3.1g User Documentation Page 89

}

}
/1 plain red/white check box
box { <1, -1, -1> <1, 1, 1>
texture {
PLAI N_TEXTURE
}

translate <-1.5, 1.2, 0>
}

We render this scene. It is not particularly interesting, isn't it? That is why we will use some layered textures to
make it more interesting.

First, we add a layer of two different, partially transparent grays. We tile them as we had tiled the red and white
colors, but we add some turbulence to make the fading more realistic. We add following box to the previous scene
and re-render (see file | ayer ed2. pov).

#decl are FADED TEXTURE =
/1 red/white check texture
texture {
pi gment {
checker
col or rgb<0.920, 0.000, 0.000>
col or rgb<1.000, 1.000, 1.000>
scal e <0. 2500, 0.2500, 0.2500>
}
}
/1 greys to fade red/white
texture {
pi gment {
checker
col or rgbf<0.632, 0.612, 0.688, 0.698>
col or rgbf<0.420, 0.459, 0.520, 0.953>
t ur bul ence 0.500
scal e <0. 2500, 0.2500, 0.2500>

}

}
/1 faded red/white check box
box { <1, -1, -1> <1, 1, 1>
texture {
FADED_TEXTURE
}

translate <1.5, 1.2, 0>
}

Even though it is a subtle difference, the red and white checks no longer look quite so new.

Since there is a bottle of wine in the picnic scene, we thought it might be a nice touch to add a stain or two. While
this effect can almost be achieved by placing a flattened blob on the cloth, what we really end up with is a spill
effect, not a stain. Thus it is time to add another layer.

Again, we add another box to the scene we already have scripted and re-render (see file | ayer ed3. pov).

#decl are STAI NED_TEXTURE =
/1 red/white check
texture {
pi gment {
checker
col or rgh<0.920, 0.000, 0.000>

May 1999 POV-Ray 3.1g User Documentation Page 90

col or rgb<1.000, 1.000, 1.000>
scal e <0.2500, 0.2500, 0.2500>
}
}
/1 greys to fade check
texture {
pi gment {
checker
col or rghf<0.634, 0.612, 0.688, 0.698>
col or rghf<0.421, 0.463, 0.518, 0.953>
tur bul ence 0.500
scal e <0.2500, 0.2500, 0.2500>
}
}
/1 wine stain
texture {
pi gment {
spott ed
color_map {
[0.000 color rgb<0.483, 0.165, 0.165>]
[0.329 color rgbf<1.000, 1.000, 1.000, 1.000>]
[0.734 color rgbf<1.000, 1.000, 1.000, 1.000>]
[1.000 color rgb<0.483, 0.165, 0.165>]
}
tur bul ence 0.500
frequency 1.500

}

/1 stained box
box { <1, -1, -1> <1, 1, 1>
texture {
STAI NED_TEXTURE
}

translate <-1.5, -1.2, 0>
}

Now there's a tablecloth texture with personality.

Another touch we want to add to the cloth are some wrinkles as if the cloth had been rumpled. This is not another
texture layer, but when working with layered textures, we must keep in mind that changes to the surface normal
must be included in the uppermost layer of the texture. Changes to lower layers have no effect on the final product
(no matter how transparent the upper layers are).

We add this final box to the script and re-render (see file | ayer ed4. pov)

#decl are WRI NKLED TEXTURE =
/1l red and white check
texture {
pi gment {
checker
col or rgh<0.920, 0.000, 0.000>
col or rgb<1.000, 1.000, 1.000>
scal e <0. 2500, 0.2500, 0.2500>
}
}
/'l greys to "fade" checks
texture {
pi gment {

May 1999 POV-Ray 3.1g User Documentation Page 91

checker
col or rgbf<0.632, 0.612, 0.688, 0.698>
col or rgbf<0.420, 0.459, 0.520, 0.953>
tur bul ence 0.500
scal e <0. 2500, 0.2500, 0.2500>
}
}
/1l the wine stains
texture {
pi gment {
spott ed
col or _map {
[0.000 color rgb<0.483, 0.165, 0.165>]
[0.329 color rgbf<1.000, 1.000, 1.000, 1.000>]
[0.734 color rgbf<1.000, 1.000, 1.000, 1.000>]
[1.000 color rgb<0.483, 0.165, 0.165>]
}
tur bul ence 0. 500
frequency 1.500
}
nor mal {
wri nkl es 5. 0000

}

/1 wrinkled box
box { <1, -1, -1> <1, 1, 1>
texture {
VRl NKLED TEXTURE
}

translate <1.5, -1.2, 0>
}

Well, this may not be the tablecloth we want at any picnic we're attending, but if we compare the final box to the
first, we see just how much depth, dimension, and personality is possible just by the use of creative texturing.

One final note: the comments concerning the surface normal do not hold true for finishes. If a lower layer contains a
specular finish and an upper layer does not, any place where the upper layer is transparent, the specular will show
through.

2.7.11 When All Else Fails: Material Maps

We have some pretty powerful texturing tools at our disposal, but what if we want a more free form arrangement of
complex textures? Well, just as image maps do for pigments, and bump maps do for normals, whole textures can be
mapped using a material map, should the need arise.

Just as with image maps and bump maps, we need a source image in bitmapped format which will be called by
POV-Ray to serve as the map of where the individual textures will go, but this time, we need to specify what texture
will be associated with which palette index. To make such an image, we can use a paint program which allows us to
select colors by their palette index number (the actual color is irrelevant, since it is only a map to tell POV-Ray what
texture will go at that location). Now, if we have the complete package that comes with POV-Ray, we have in our
include files an image called povmap. gi f which is a bitmapped image that uses only the first four palette indices
to create a bordered square with the words "Persistence of Vision" in it. This will do just fine as a sample map for
the following example. Using our same include files, the camera and light source, we enter the following object.

plane { -z, O
texture {
mat eri al _map {

May 1999 POV-Ray 3.1g User Documentation Page 92

gif "povmap.gif"
i nterpolate 2

once
texture { PinkAl abaster } /1 the inner border
texture { pigment { DMFDarkGak } } // outer border
texture { Gold_Metal } /1 lettering
texture { Chrone_Metal } /1 the wi ndow panel

}

translate <-0.5, -0.5, 0>

scale 5

}
}

The position of the light source and the lack of foreground objects to be reflected do not show these textures off to
their best advantage. But at least we can see how the process works. The textures have simply been placed according
to the location of pixels of a particular palette index. By using the once keyword (to keep it from tiling), and
translating and scaling our map to match the camera we have been using, we get to see the whole thing laid out for
us.

Of course, that is just with palette mapped image formats, such as GIF and certain flavors of PNG. Material maps
can also use non-paletted formats, such as the TGA files that POV-Ray itself outputs. That leads to an interesting
consequence: We can use POV-Ray to produce source maps for POV-Ray! Before we wrap up with some of the
limitations of special textures, let's do one more thing with material maps, to show how POV-Ray can make its own
source maps.

To begin with, if using an non-paletted image, POV-Ray looks at the 8 bit red component of the pixel's color (which
will be a value from 0 to 255) to determine which texture from the list to use. So to create a source map, we need to
control very precisely what the red value of a given pixel will be. We can do this by

1.) Using an rgb statement to choose our color such asr gb <N 255, 0, 0>, where "N" is the red value we want
to assign that pigment, and then...

2.) Use no light sources and apply a finish of f i ni sh{anmbi ent 1} to all objects, to ensure that highlighting
and shadowing will not interfere.

Confused? Alright, here is an example, which will generate a map very much like povmap. gi f which we used
earlier, except in TGA file format. We notice that we have given the pigments blue and green components too.
POV-Ray will ignore that in our final map, so this is really for us humans, whose unaided eyes cannot tell the
difference between red variances of 0 to 4/255ths. Without those blue and green variances, our map would look to
our eyes like a solid black screen. That may be a great way to send secret messages using POV-Ray (plug it into a
material map to decode) but it is no use if we want to see what our source map looks like to make sure we have what
we expected to.

We render the following code, and name the resulting file povmap. t ga.

canera ({
ort hographi c
up <0, 5, 0>
right <5, 0, 0>
| ocation <0, 0, -25>
| ook_at <0, 0, 0>

}

plane { -z, O
pigment { rgb <1/255, 0, 0.5>}
finish { anbient 1 }

}

box { <-2.3, -1.8, -0.2>, <2.3, 1.8, -0.2>
pi gnment { rgb <0/255, 0, 1>}
finish { anbient 1 }

}

May 1999 POV-Ray 3.1g User Documentation Page 93

box { <-1.95, -1.3, -0.4> <1.95, 1.3, -0.3>
pi gment { rgb <2/255, 0.5, 0.5>}
finish { ambient 1 }

}
text { ttf "crystal.ttf", "The vision", 0.1, O
scale <0.7, 1, 1>
translate <-1.8, 0.25, -0.5>
pi gment { rgb <3/255, 1, 1>}
finish { anbient 1}
}
text { ttf "crystal.ttf", "Persists!", 0.1, O
scale <0.7, 1, 1>
translate <-1.5, -1, -0.5>
pigment { rgb <3/255, 1, 1>}
finish { anbient 1}
}

All we have to do is modify our last material map example by changing the material map from GIF to TGA and
modifying the filename. When we render using the new map, the result is extremely similar to the palette mapped
GIF we used before, except that we didn't have to use an external paint program to generate our source: POV-Ray
did it all!

2.7.12 Limitations Of Special Textures

There are a couple limitations to all of the special textures we have seen (from textures, pigment and normal maps
through material maps). First, if we have used the default directive to set the default texture for all items in our
scene, it will not accept any of the special textures discussed here. This is really quite minor, since we can always
declare such a texture and apply it individually to all objects. It doesn't actually prevent us from doing anything we
couldn't otherwise do.

The other is more limiting, but as we will shortly see, can be worked around quite easily. If we have worked with
layered textures, we have already seen how we can pile multiple texture patterns on top of one another (as long as
one texture has transparency in it). This very useful technique has a problem incorporating the special textures we
have just seen as a layer. But there is an answer!

For example, say we have a layered texture called Speckl ed_Met al , which produces a silver metallic surface,
and then puts tiny specks of rust all over it. Then we decide, for a really rusty look, we want to create patches of
concentrated rust, randomly over the surface. The obvious approach is to create a special texture pattern, with
transparency to use as the top layer. But of course, as we have seen, we wouldn't be able to use that texture pattern
as a layer. We would just generate an error message. The solution is to turn the problem inside out, and make our
layered texture part of the texture pattern instead, like this

/1 This part declares a pignment for use
/1 in the rust patch texture pattern
#decl are Rusty = pigment {
granite
col or _map {
[Orgb <0.2, 0, 0>]
[1 Brown]

}
frequency 20

/1 And this part applies it
/1 Notice that our original |ayered texture
/1 "Speckled_Metal" is now part of the map
#decl are Rust_Patches = texture {

bozo

May 1999 POV-Ray 3.1g User Documentation Page 94

texture_map {
[0.0 pignent {Rusty}]
[0.75 Speckl ed_Metal]
[1.0 Speckled Metal]
}
}

And the ultimate effect is the same as if we had layered the rust patches on to the speckled metal anyway.

With the full array of patterns, pigments, normals, finishes, layered and special textures, there is now practically
nothing we cannot create in the way of amazing textures. An almost infinite number of new possibilities are just
waiting to be created!

2.8 Using the Camera

2.8.1 Using Focal Blur

Let's construct a simple scene to illustrate the use of focal blur. For this example we will use a pink sphere, a green
box and a blue cylinder with the sphere placed in the foreground, the box in the center and the cylinder in the
background. A checkered floor for perspective and a couple of light sources will complete the scene. We create a
new file called f ocal dem pov and enter the following text

#i ncl ude "col ors.inc"
#i ncl ude "shapes.inc"
#i ncl ude "textures.inc"
sphere { <1, 0, -6>, 0.5
finish {
anbient 0.1
di ffuse 0.6
}
pi gment { NeonPink }
}
box { <1, -1, -1> <1, 1, 1>
rotate <0, -20, 0>
finish {
anbient 0.1
di ffuse 0.6

}
pi gment { Green }

}
cylinder { <6, 6, 30> <-6, -1, 30> 3
finish {
anbient 0.1
di ffuse 0.6

pi gment { NeonBl ue}
plane { y, -1.0

pi gment {
checker color Gray65 color G ay30
}

}
light source { <5, 30, -30> color Wite }
[ight_source { <-5, 30, -30> color White }

May 1999 POV-Ray 3.1g User Documentation Page 95

Now we can proceed to place our focal blur camera to an appropriate viewing position. Straight back from our three
objects will yield a nice view. Adjusting the focal point will move the point of focus anywhere in the scene. We just
add the following lines to the file:

camera f{
| ocation <0.0, 1.0, -10.0>
| ook _at <0.0, 1.0, 0.0>

/1 focal _point <-6, 1, 30> /1 blue cylinder in focus

/1 focal _point <0, 1, 0> /1 green box in focus
focal _point <1, 1, -6> /'l pink sphere in focus
aperture 0.4 /1 a nice conpronise

/1 aperture 0.05 /1 alnost everything is in focus

/1l aperture 1.5 /1 much blurring

/1 blur_sanmples 4 /1 fewer sanples, faster to render
bl ur _sanpl es 20 /'l nore sanples, higher quality imge

}

The focal point is simply the point at which the focus of the camera is at its sharpest. We position this point in our
scene and assign a value to the aperture to adjust how close or how far away we want the focal blur to occur from
the focused area.

The aperture setting can be considered an area of focus. Opening up the aperture has the effect of making the area of
focus smaller while giving the aperture a smaller value makes the area of focus larger. This is how we control where
focal blur begins to occur around the focal point.

The blur samples setting determines how many rays are used to sample each pixel. Basically, the more rays that are
used the higher the quality of the resultant image, but consequently the longer it takes to render. Each scene is
different so we have to experiment. This tutorial has examples of 4 and 20 samples but we can use more for high
resolution images. We should not use more samples than is necessary to achieve the desired quality - more samples
take more time to render. The confidence and variance settings are covered in section "Focal Blur".

We experiment with the focal point, aperture, and blur sample settings. The scene has lines with other values that
we can try by commenting out the default line with double slash marks and un-commenting the line we wish to try
out. We make only one change at a time to see the effect on the scene.

Two final points when tracing a scene using a focal blur camera. We needn't specify anti-aliasing because the focal
blur code uses its one sampling method that automatically takes care of anti-aliasing. Focal blur can only be used
with the perspective camera.

2.9 Using Atmospheric Effects

POV-Ray offers a variety of atmospheric effects, i. e. features that affect the background of the scene or the air by
which everything is surrounded.

It is easy to assign a simple color or a complex color pattern to a virtual sky sphere. You can create anything from a
cloud free, blue summer sky to a stormy, heavy clouded sky. Even starfields can easily be created.

You can use different kinds of fog to create foggy scenes. Multiple fog layers of different colors can add an eerie
touch to your scene.

A much more realistic effect can be created by using an atmosphere, a constant fog that interacts with the light
coming from light sources. Beams of light become visible and objects will cast shadows into the fog.

Last but not least you can add a rainbow to your scene.

May 1999 POV-Ray 3.1g User Documentation Page 96

2.9.1 The Background

The backgr ound feature is used to assign a color to all rays that don't hit any object. This is done in the following
way.

camera f{

| ocation <0, 0, -10>

| ook_at <0, 0, 0>
}
background { color rgb <0.2, 0.2, 0.3>}
sphere { 0, 1

pi gment { color rgb <0.8, 0.5, 0.2>}
}

The background color will be visible if a sky sphere is used and if some translucency remains after all sky sphere
pigment layers are processed.

2.9.2 The Sky Sphere

The sky_spher e can be used to easily create a cloud covered sky, a nightly star sky or whatever sky you have in
mind.

In the following examples we'll start with a very simple sky sphere that will get more and more complex as we add
new features to it.

2.9.2.1 Creating a Sky with a Color Gradient

Beside the single color sky sphere that is covered with the background feature the simplest sky sphere is a color
gradient.

You may have noticed that the color of the sky varies with the angle to the earth's surface normal. If you look
straight up the sky normally has a much deeper blue than it has at the horizon.

We want to model this effect using the sky sphere as shown in the scene below (skysphl. pov).

#i ncl ude "col ors.inc"
camera f{
| ocation <0, 1, -4>
| ook_at <0, 2, 0>
angl e 80
}
light _source { <10, 10, -10> Wite }
sphere { 2*y, 1
pigment { color rgb <1, 1, 1>}
finish { anbient 0.2 diffuse O reflection 0.6 }

}
sky_sphere {
pi gment {
gradient y
col or _map {
[0 col or Red]
[1 color Blue]
}
scale 2
translate -1

May 1999 POV-Ray 3.1g User Documentation Page 97

The interesting part is the sky sphere statement. It contains a pigment that describe the look of the sky sphere. We
want to create a color gradient along the viewing angle measured against the earth's surface normal. Since the ray
direction vector is used to calculate the pigment colors we have to use the y-gradient.

The scale and translate transformation are used to map the points derived from the direction vector to the right
range. Without those transformations the pattern would be repeated twice on the sky sphere. The scal e statement
is used to avoid the repetition and the t r ansl at e - 1 statement moves the color at index zero to the bottom of the
sky sphere (that's the point of the sky sphere you'll see if you look straight down).

After this transformation the color entry at position 0 will be at the bottom of the sky sphere, i. e. below us, and the
color at position 1 will be at the top, i. e. above us.

The colors for all other positions are interpolated between those two colors as you can see in the resulting image.

A simple gradient sky sphere.

If you want to start one of the colors at a specific angle you'll first have to convert the angle to a color map index.
This is done by using the formula

color_map_index = (1 - cos(angle)) / 2

where the angle is measured against the negated earth's surface normal. This is the surface normal pointing towards
the center of the earth. An angle of 0 degrees describes the point below us while an angle of 180 degrees represents
the zenith.

In POV-Ray you first have to convert the degree value to radian values as it is shown in the following example.

sky_sphere {
pi gment {
gradient y
color_map {
[(1-cos(radians(30)))/2 col or Red]
[(1-cos(radians(120)))/2 col or Bl ue]

scale 2
translate -1

}
}

This scene uses a color gradient that starts with a red color at 30 degrees and blends into the blue color at 120
degrees. Below 30 degrees everything is red while above 120 degrees all is blue.

May 1999 POV-Ray 3.1g User Documentation Page 98

2.9.2.2 Adding the Sun

In the following example we will create a sky with a red sun surrounded by a red color halo that blends into the dark
blue night sky. We'll do this using only the sky sphere feature.

The sky sphere we use is shown below. A ground plane is also added for greater realism (skysph2. pov).

sky sphere {
pi gment {
gradient y
col or _map {

[0.000 0.002 color rgh <1.0, 0.2, 0.0>
color rgh <1.0, 0.2, 0.0>]
[0.002 0.200 color rgh <0.8, 0.1, 0.0>
color rgh <0.2, 0.2, 0.3>]

scale 2
translate -1

}
rotate -135*x
}
plane { y, O
pi gment { color Geen }
finish { anbient .3 diffuse .7 }

}

The gradient pattern and the transformation inside the pigment are the same as in the example in the previous
section.

The color map consists of three colors. A bright, slightly yellowish red that is used for the sun, a darker red for the
halo and a dark blue for the night sky. The sun's color covers only a very small portion of the sky sphere because we
don't want the sun to become too big. The color is used at the color map values 0.000 and 0.002 to get a sharp
contrast at value 0.002 (we don't want the sun to blend into the sky). The darker red color used for the halo blends
into the dark blue sky color from value 0.002 to 0.200. All values above 0.200 will reveal the dark blue sky.

Therot at e - 135*x statement is used to rotate the sun and the complete sky sphere to its final position. Without
this rotation the sun would be at 0 degrees, i.e. right below us.

A red sun descends into the night.

Looking at the resulting image you'll see what impressive effects you can achieve with the sky sphere.

May 1999 POV-Ray 3.1g User Documentation Page 99

2.9.2.3 Adding Some Clouds

To further improve our image we want to add some clouds by adding a second pigment. This new pigment uses the
bozo pattern to create some nice clouds. Since it lays on top of the other pigment it needs some transparent colors in
the color map (look at entries 0.5 to 1.0).

sky_sphere {
pi gment {
gradient y
color_map {
[0.000 0.002 color rgb <1.0,
color rgb <1.0,
[0.002 0.200 color rgb <0.8,
color rgb <0.2,

0. 0>
0. 0>]

o000
o
o
v

NENDN

0.3>]

}

scale 2
translate -1

i gnent {
bozo
turbul ence 0. 65
octaves 6
onega 0.7
| ambda 2
color_map {
[0.0 0.1 color rgb <0.85, 0.85, 0.85>
color rgb <0.75, 0.75, 0.75>]
[0.1 0.5 color rgb <0.75, 0.75, 0.75>
color rght <1, 1, 1, 1>]
[0.5 1.0 color rgbht <1, 1, 1, 1>
color rght <1, 1, 1, 1>]

k=

}
scale <0.2, 0.5, 0.2>

}
rotate -135*x

}

A cloudy sky with a setting sun.

May 1999 POV-Ray 3.1g User Documentation Page 100

The sky sphere has one drawback as you might notice when looking at the final image (skysph3. pov). The sun
doesn't emit any light and the clouds will not cast any shadows. If you want to have clouds that cast shadows you'll
have to use a real, large sphere with an appropriate texture and a light source somewhere outside the sphere.

2.9.3 The Fog

You can use the f og feature to add fog of two different types to your scene: constant fog and ground fog. The
constant fog has a constant density everywhere while the ground fog's density decreases as you move upwards.

The usage of both fog types will be described in the next sections in detail.

2.9.3.1 A Constant Fog

The simplest fog type is the constant fog that has a constant density in all locations. It is specified by a di st ance
keyword which actually describes the fog's density and a fog col or .

The distance value determines the distance at which 36.8% of the background are still visible (for a more detailed
explanation of how the fog is calculated read the reference section "Fog").

The fog color can be used to create anything from a pure white to a red, blood-colored fog. You can also use a black
fog to simulate the effect of a limited range of vision.

The following example will show you how to add fog to a simple scene (f ogl. pov).

#i ncl ude "col ors.inc"
canera ({
| ocation <0, 20, -100>
}
background { col or SkyBl ue }
plane { vy, -10
pi gment {
checker color Yellow col or G een
scale 20

}

}
sphere { <0, 25, 0>, 40

pigment { Red }

finish { phong 1.0 phong_size 20 }
}
sphere { <-100, 150, 200>, 20

pi gment { Green }

finish { phong 1.0 phong_size 20 }
}
sphere { <100, 25, 100>, 30

pi gment { Blue }

finish { phong 1.0 phong_size 20 }
}
light source { <100, 120, 40> color Wite}
fog {

di st ance 150

color rgh<0.3, 0.5, 0.2>

}

May 1999 POV-Ray 3.1g User Documentation Page 101

A foggy scene.

According to their distance the spheres in this scene more or less vanish in the greenish fog we used, as does the
checkerboard plane.

2.9.3.2 Setting a Minimum Translucency

If you want to make sure that the background does not completely vanish in the fog you can set the transmittance
channel of the fog's color to the amount of background you always want to be visible.

Using as transmittance value of 0.2 as in

fog {
di stance 150

color rgbt<0.3, 0.5, 0.2, 0.2>
}

the fog's translucency never drops below 20% as you can see in the resulting image (f 0g2. pov).

\

Adding a translucency threshold you make sure that the background does not vanish.

May 1999 POV-Ray 3.1g User Documentation Page 102

2.9.3.3 Creating a Filtering Fog

The greenish fog we have used so far doesn't filter the light passing through it. All it does is to diminish the light's
intensity. We can change this by using a non-zero filter channel in the fog's color (f 0g3. pov).

fog {
di st ance 150

color rgbf<0.3, 0.5, 0.2, 1.0>
}
The filter value determines the amount of light that is filtered by the fog. In our example 100% of the light passing

through the fog will be filtered by the fog. If we had used a value of 0.7 only 70% of the light would have been
filtered. The remaining 30% would have passed unfiltered.

A filtering fog.

You'll notice that the intensity of the objects in the fog is not only diminished due to the fog's color but that the
colors are actually influenced by the fog. The red and especially the blue sphere got a green hue.

2.9.3.4 Adding Some Turbulence to the Fog

In order to make our somewhat boring fog a little bit more interesting we can add some turbulence, making it look
like it had a non-constant density (f og4. pov).

fog {
di stance 150

color rgbhf<0.3, 0.5, 0.2, 1.0>
turbul ence 0.2
turb_depth 0.3

}

May 1999 POV-Ray 3.1g User Documentation Page 103

Adding some turbulence makes the fog more interesting.

The t ur bul ence keyword is used to specify the amount of turbulence used while the t ur b_dept h value is used
to move the point at which the turbulence value is calculated along the viewing ray. Values near zero move the point
to the viewer while values near one move it to the intersection point (the default value is 0.5). This parameter can be
used to avoid noise that may appear in the fog due to the turbulence (this normally happens at very far away
intersection points, especially if no intersection occurs, i. e. the background is hit). If this happens just lower the

t ur b_dept h value until the noise vanishes.

You should keep in mind that the actual density of the fog does not change. Only the distance-based attenuation
value of the fog is modified by the turbulence value at a point along the viewing ray.

2.9.3.5 Using Ground Fog

The much more interesting and flexible fog type is the ground fog, which is selected with the f og_t ype statement.
It's appearance is described with the f og_of f set and f og_al t keywords. The f og_of f set specifies the
height, i. e. y value, below which the fog has a constant density of one. The f og_al t keyword determines how fast
the density of the fog will approach zero as one moves along the y axis. At a height of fog_offset+fog_alt the fog
will have a density of 25%.

The following example (f 0g5. pov) uses a ground fog which has a constant density below y=25 (the center of the
red sphere) and quickly falls off for increasing altitudes.

fog {
di st ance 150

color rgbf<0.3, 0.5, 0.2, 1.0>
fog_type 2

fog_of fset 25

fog_alt 1

May 1999 POV-Ray 3.1g User Documentation Page 104

The ground fog only covers the lower parts of the world."

2.9.3.6 Using Multiple Layers of Fog

It is possible to use several layers of fog by using more than one fog statement in your scene file. This is quite useful
if you want to get nice effects using turbulent ground fogs. You could add up several, differently colored fogs to

create an eerie scene for example.

Just try the following example (f 0g6. pov).

fog {
di stance 150

color rgh<0.3, 0.5, 0.2>
fog_type 2

fog_offset 25

fog_alt 1

turbul ence 0.1
turb_depth 0.2

}

fog {
di st ance 150

color rgh<0.5, 0.1, 0.1>
fog_type 2

fog_offset 15

fog_alt 4

turbul ence 0.2
turb_depth 0.2

}

fog {
di st ance 150

color rgh<0.1, 0.1, 0.6>
fog_type 2

fog_offset 10

fog_ alt 2

May 1999 POV-Ray 3.1g User Documentation

Page 105

Quite nice results can be achieved using multiple layers of fog.

You can combine constant density fogs, ground fogs, filtering fogs, non-filtering fogs, fogs with a translucency
threshold, etc.

2.9.3.7 Fog and Hollow Objects

Whenever you use the fog feature and the camera is inside a non-hollow object you won't get any fog effects. For a
detailed explanation why this happens see "Empty and Solid Objects".

In order to avoid this problem you have to make all those objects hollow by either making sure the camera is outside
these objects (using the i nver se keyword) or by adding the hol | owto them (which is much easier).

2.9.4 The Rainbow

The r ai nbow feature can be used to create rainbows and maybe other more strange effects. The rainbow is a fog
like effect that is restricted to a cone-like volume.

2.9.4.1 Starting With a Simple Rainbow

The rainbow is specified with a lot of parameters: the angle under which it is visible, the width of the color band, the
direction of the incoming light, the fog-like distance based particle density and last but not least the color map to be
used.

The size and shape of the rainbow are determined by the angl e and wi dt h keywords. The di r ect i on keyword
is used to set the direction of the incoming light, thus setting the rainbow's position. The rainbow is visible when the
angle between the direction vector and the incident light direction is larger than angle-width/2 and smaller than
angle+width/2.

The incoming light is the virtual light source that is responsible for the rainbow. There needn't be a real light source
to create the rainbow effect.

The rainbow is a fog-like effect, i.e. the rainbow's color is mixed with the background color based on the distance to
the intersection point. If you choose small distance values the rainbow will be visible on objects, not just in the
background. You can avoid this by using a very large distance value.

The color map is the crucial part of the rainbow since it contains all the colors that normally can be seen in a
rainbow. The color of the innermost color band is taken from the color map entry 0 while the outermost band is take

May 1999 POV-Ray 3.1g User Documentation Page 106

from entry 1. You should note that due to the limited color range any monitor can display it is impossible to create a

real rainbow. There are just some colors that you cannot display.

The filter channel of the rainbow's color map is used in the same way as with fogs. It determines how much of the

light passing through the rainbow is filtered by the color.

The following example shows a simple scene with a ground plane, three spheres and a somewhat exaggerated

rainbow (r ai nbowl. pov).

#i ncl ude "col ors.inc"
canera ({
| ocati on <0, 20, -100>
| ook_at <0, 25, 0>
angl e 80
}
background { col or SkyBl ue }
plane { y, -10 pignent { color Geen } }
light source {<100, 120, 40> color White}
// declare rai nbow s colors

s
#declare r_violetl = color rgbf<1.0, 0.5, 1.0, 1
#declare r_violet2 = color rgbf<1.0, 0.5, 1.0, O
#declare r_indigo = color rgbf<0.5, 0.5, 1.0, O
#decl are r_bl ue = color rgbhf<0.2, 0.2, 1.0, O
#decl are r_cyan = color rgbhf<0.2, 1.0, 1.0, O
#decl are r_green = color rgbf<0.2, 1.0, 0.2, O
#declare r_yellow = color rgbf<1.0, 1.0, 0.2, O
#declare r_orange = color rgbhf<1.0, 0.5, 0.2, 0O
#declare r_redl = color rgbhf<1.0, 0.2, 0.2, O
#decl are r_red2 = color rgbf<1.0, 0.2, 0.2, 1

/1 create the rai nbow
r ai nbow {
angle 42.5
width 5
di stance 1.0e7
direction <-0.2, -0.2, 1>
jitter 0.01
color_map {
[0.000 color
[0.100 color
[0.214 color r_indigo]
[0.328 color r_blue]

r_violetl]
r
r
r
[0.442 color r_cyan]
r
r
r
r

_violet2]

[0.556 color r_green]
[0.670 color r_yellow
[0.784 color r_orange]
[0.900 color r_redl]
}
}

Some irregularity is added to the color bands using the j i t t er keyword.

May 1999 POV-Ray 3.1g User Documentation

. 0>
. 8>;
. 8>;
. 8>;
. 8>;
. 8>;
. 8>;
. 8>;
. 8>;
. 0>;

Page 107

A colorful rainbow.

The rainbow in our sample is much too bright. You'll never see a rainbow like this in reality. You can decrease the
rainbow's colors by decreasing the RGB values in the color map.

2.9.4.2 Increasing the Rainbow's Translucency

The result we have so far looks much too bright. Just reducing the rainbow's color helps but it's much better to
increase the translucency of the rainbow because it is more realistic if the background is visible through the rainbow.

We can use the transmittance channel of the colors in the color map to specify a minimum translucency, just like we
did with the fog. To get realistic results we have to use very large transmittance values as you can see in the
following example (r ai nbow2. pov).

rai nbow {
angle 42.5
width 5
di stance 1.0e7
direction <-0.2, -0.2, 1>
jitter 0.01
color_map {

[0.000 <color r_violetl transmt 0.98]
[0.100 <color r_violet2 transmt 0.96]
[0.214 «color r_indigo transmt 0.94]
[0.328 color r_blue transmt 0.92]
[0.442 color r_cyan transmt 0.90]
[0.556 color r_green transmit 0.92]
[0.670 <color r_yellow transmt 0.94]
[0.784 color r_orange transmt 0.96]
[0.900 <color r_redl transmt 0.98]

}
}

The transmittance values increase at the outer bands of the rainbow to make it softly blend into the background.

May 1999 POV-Ray 3.1g User Documentation Page 108

A much more realistic rainbow.

The resulting image looks much more realistic than our first rainbow.

2.9.4.3 Using a Rainbow Arc

Currently our rainbow has a circular shape, even though most of it is hidden below the ground plane. You can easily
create a rainbow arc by using the ar c_angl e keyword with an angle below 360 degrees.

If you use ar c_angl e 120 for example you'll get a rainbow arc that abruptly vanishes at the arc's ends. This does
not look good. To avoid this the f al | of f _angl e keyword can be used to specify a region where the arc smoothly
blends into the background.

As explained in the rainbow's reference section (see "Rainbow") the arc extends from -arc_angle/2 to arc_angle/2
while the blending takes place from -arc_angle/2 to -falloff_angle/2 and falloff_angle/2 to arc_angle/2. This is the
reason why the f al | of f _angl e has to be smaller or equal to the ar c_angl e.

In the following examples we use an 120 degrees arc with a 45 degree falloff region on both sides of the arc
(r ai nbow3. pov).

rai nbow {
angle 42.5
width 5
arc_angle 120
falloff_angle 30
di stance 1.0e7
direction <-0.2, -0.2, 1>
jitter 0.01
col or _map {

[0.000 <color r_violetl transmt 0.98]
[0.100 <color r_violet2 transmt 0.96]
[0.214 <color r_indigo transmt 0.94]
[0.328 color r_blue transmit 0.92]
[0.442 color r_cyan transmit 0.90]
[0.556 color r_green transmt 0.92]
[0.670 <color r_yellow transmt 0.94]
[0.784 color r_orange transmt 0.96]
[0.900 <color r_redl transmit 0.98]

May 1999 POV-Ray 3.1g User Documentation Page 109

The arc angles are measured against the rainbows up direction which can be specified using the up keyword. By
default the up direction is the y-axis.

A rainbow arc.

We finally have a realistic looking rainbow arc.

2.9.5 Animation

There are a number of programs available that will take a series of still image files (such as POV-Ray outputs) and
assemble them into animations. Such programs can produce AVI, MPEG, FLI/FLC, QuickTime, or even animated
GIF files (for use on the World Wide Web). The trick, therefore, is how to produce the frames. That, of course, is
where POV-Ray comes in. In earlier versions producing an animation series was no joy, as everything had to be
done manually. We had to set the clock variable, and handle producing unique file names for each individual frame
by hand. We could achieve some degree of automation by using batch files or similar scripting devices, but still, We
had to set it all up by hand, and that was a lot of work (not to mention frustration... imagine forgetting to set the
individual file names and coming back 24 hours later to find each frame had overwritten the last).

Now, at last, with POV-Ray 3, there is a better way. We no longer need a separate batch script or external
sequencing programs, because a few simple settings in our INI file (or on the command line) will activate an internal
animation sequence which will cause POV-Ray to automatically handle the animation loop details for us.

Actually, there are two halves to animation support: those settings we put in the INI file (or on the command line),
and those code modifications we work into our scene description file. If we've already worked with animation in
previous versions of POV-Ray, we can probably skip ahead to the section "INI File Settings" below. Otherwise, let's
start with basics. Before we get to how to activate the internal animation loop, let's look at a couple examples of how
a couple of keywords can set up our code to describe the motions of objects over time.

2.9.5.1 The Clock Variable: Key To It All

POV-Ray supports an automatically declared floating point variable identified as cl ock (all lower case). This is the
key to making image files that can be automated. In command line operations, the clock variable is set using the +k
switch. For example, +k3. 4 from the command line would set the value of clock to 3.4. The same could be
accomplished from the INI file using Cl ock=3. 4 in an INI file.

If we don't set clock for anything, and the animation loop is not used (as will be described a little later) the clock

variable is still there - it's just set for the default value of 0.0, so it is possible to set up some POV code for the
purpose of animation, and still render it as a still picture during the object/world creation stage of our project.

May 1999 POV-Ray 3.1g User Documentation Page 110

The simplest example of using this to our advantage would be having an object which is travelling at a constant rate,
say, along the x-axis. We would have the statement

transl ate <cl ock, 0, 0>

in our object's declaration, and then have the animation loop assign progressively higher values to clock. And that's
fine, as long as only one element or aspect of our scene is changing, but what happens when we want to control
multiple changes in the same scene simultaneously?

The secret here is to use normalized clock values, and then make other variables in your scene proportional to clock.
That is, when we set up our clock, (we're getting to that, patience!) have it run from 0.0 to 1.0, and then use that as a
multiplier to some other values. That way, the other values can be whatever we need them to be, and clock can be
the same 0 to 1 value for every application. Let's look at a (relatively) simple example

#i ncl ude "col ors.inc"
camera f{
| ocation <0, 3, -6>
| ook _at <0, 0, 0>
}
light source { <20, 20, -20> color Wiite }
plane { vy, O
pi gment { checker color Wite color Black }

}
sphere { <0, 0, 0>, 1
pi gment {
gradi ent x
color_map {
[0.0 Blue]
[0.5 Blue]
[0.5 Wiite]
[1.0 Wiite]

scale .25
}
rotate <0, 0, -clock*360>
translate <-pi, 1, 0>
transl ate <2*pi*clock, 0, 0>

}

Assuming that a series of frames is run with the clock progressively going from 0.0 to 1.0, the above code will
produce a striped ball which rolls from left to right across the screen. We have two goals here:

1. Translate the ball from point A to point B, and,
2. Rotate the ball in exactly the right proportion to its linear movement to imply that it is rolling -- not gliding -- to
its final position.

Taking the second goal first, we start with the sphere at the origin, because anywhere else and rotation will cause it
to orbit the origin instead of rotating. Throughout the course of the animation, the ball will turn one complete 360
degree turn. Therefore, we used the formula, 360* cl ock to determine the rotation in each frame. Since clock runs
0 to 1, the rotation of the sphere runs from 0 degrees through 360.

Then we used the first translation to put the sphere at its initial starting point. Remember, we couldn't have just
declared it there, or it would have orbited the origin, so before we can meet our other goal (translation), we have to
compensate by putting the sphere back where it would have been at the start. After that, we re-translate the sphere
by a clock relative distance, causing it to move relative to the starting point. We've chosen the formula of 2*pi*
r*clock (the widest circumference of the sphere times current clock value) so that it will appear to move a distance
equal to the circumference of the sphere in the same time that it rotates a complete 360 degrees. In this way, we've
synchronized the rotation of the sphere to its translation, making it appear to be smoothly rolling along the plane.

May 1999 POV-Ray 3.1g User Documentation Page 111

Besides allowing us to coordinate multiple aspects of change over time more cleanly, mathematically speaking, the
other good reason for using normalized clock values is that it will not matter whether we are doing a ten frame
animated GIF, or a three hundred frame AVI. Values of the clock are proportioned to the number of frames, so that
same POV code will work without regard to how long the frame sequence is. Our rolling ball will still travel the
exact same amount no matter how many frames our animation ends up with.

2.9.5.2 Clock Dependant Variables And Multi-Stage Animations

Okay, what if we wanted the ball to roll left to right for the first half of the animation, then change direction 135
degrees and roll right to left, and toward the back of the scene. We would need to make use of POV-Ray's hew
conditional rendering directives, and test the clock value to determine when we reach the halfway point, then start
rendering a different clock dependant sequence. But our goal, as above, it to be working in each stage with a
variable in the range of 0 to 1 (normalized) because this makes the math so much cleaner to work with when we
have to control multiple aspects during animation. So let's assume we keep the same camera, light, and plane, and let
the clock run from 0 to 2! Now, replace the single sphere declaration with the following...

#if (clock <= 1)
sphere { <0, 0, 0>, 1
pi gment {
gradi ent x
col or _map {
[0.0 Blue]
[0.5 Blue]
[0.5 Wiite]
[1.0 White]

scale .25
}
rotate <0, 0, -clock*360>
translate <-pi, 1, 0>
transl ate <2*pi*clock, 0, 0>

}

#el se
/1 (if clock is > 1, we're on the second phase)
/1 we still want to work with a value from0O - 1

#decl are El seC ock = clock - 1;
sphere { <0, 0, 0>, 1
pi gment {
gradi ent x
col or _map {
[0.0 Blue]
[0.5 Blue]
[0.5 Wiite]
[1.0 Wiite]

scale .25

}
rotate <0, 0, ElseC ock*360>

transl ate <-2*pi *El sed ock, 0, 0>
rotate <0, 45, 0>
translate <pi, 1, 0>

}
#end
If we spotted the fact that this will cause the ball to do an unrealistic snap turn when changing direction, bonus

points for us - we're a born animator. However, for the simplicity of the example, let's ignore that for now. It will be
easy enough to fix in the real world, once we examine how the existing code works.

May 1999 POV-Ray 3.1g User Documentation Page 112

All we did differently was assume that the clock would run 0 to 2, and that we wanted to be working with a
normalized value instead. So when the clock goes over 1.0, POV assumes the second phase of the journey has
begun, and we declare a new variable El secl ock which we make relative to the original built in clock, in such a
way that while clock is going 1 to 2, Elseclock is going 0 to 1. So, even though there is only one ¢l ock, there can
be as many additional variables as we care to declare (and have memory for), so even in fairly complex scenes, the
single clock variable can be made the common coordinating factor which orchestrates all other motions.

2.9.5.3 The Phase Keyword

There is another keyword we should know for purposes of animations: the phase keyword. The phase keyword can
be used on many texture elements, especially those that can take a color, pigment, normal or texture map.
Remember the form that these maps take. For example:

color _map {
[0.00 White]
[0.25 Blue]
[0.76 Green]
[1.00 Red]

}

The floating point value to the left inside each set of brackets helps POV-Ray to map the color values to various
areas of the object being textured. Notice that the map runs cleanly from 0.0 to 1.0?

Phase causes the color values to become shifted along the map by a floating point value which follows the keyword
phase. Now, if we are using a normalized clock value already anyhow, we can make the variable clock the floating
point value associated with phase, and the pattern will smoothly shift over the course of the animation. Let's look at
a common example using a gradient normal pattern

#i ncl ude "col ors.inc"
#i ncl ude "textures.inc"
#background { rgb<0.8, 0.8, 0.8>}
canera ({
location <1.5, 1
| ook_at <0, 1, 0>
angle 10
}
light_source { <-100, 20,
/1 flag
pol ygon { 5, <0, 0>,
pi gment { Bl ue }
nor mal {
gradi ent x
phase cl ock
scale <0.2, 1, 1>
si ne_wave

- 30>

-100> color Wite }

<0, 1>, <1, 1>, <1, 0> <0, 0>

}
scale <3, 2, 1>
translate <-1.5, 0, 0>

}

/1l flagpole

cylinder { <-1.5, -4, 0>,
texture { Silver_Metal }

}
/1 pol ecap

<-1.5, 2.25, 0> 0.05

sphere { <-1.5, 2.25, 0>,
texture { Silver_Metal

}

May 1999

POV-Ray 3.1g User Documentation

0.1
}

Page 113

Now, here we've created a simple blue flag with a gradient normal pattern on it. We've forced the gradient to use a
sine-wave type wave so that it looks like the flag is rolling back and forth as though flapping in a breeze. But the
real magic here is that phase keyword. It's been set to take the clock variable as a floating point value which, as the
clock increments slowly toward 1.0, will cause the crests and troughs of the flag's wave to shift along the x-axis.
Effectively, when we animate the frames created by this code, it will look like the flag is actually rippling in the
wind.

This is only one, simple example of how a clock dependant phase shift can create interesting animation effects.
Trying phase will all sorts of texture patterns, and it is amazing the range of animation effects we can create simply
by phase alone, without ever actually moving the object.

2.9.5.4 Do Not Use Jitter Or Crand

One last piece of basic information to save frustration. Because jitter is an element of anti-aliasing, we could just as
easily have mentioned this under the INI file settings section, but there are also forms of anti-aliasing used in area
lights, and the new atmospheric effects of POV-Ray, so now is as good a time as any.

Jitter is a very small amount of random ray perturbation designed to diffuse tiny aliasing errors that might not
otherwise totally disappear, even with intense anti-aliasing. By randomizing the placement of erroneous pixels, the
error becomes less noticeable to the human eye, because the eye and mind are naturally inclined to look for regular
patterns rather than random distortions.

This concept, which works fantastically for still pictures, can become a nightmare in animations. Because it is
random in nature, it will be different for each frame we render, and this becomes even more severe if we dither the
final results down to, say 256 color animations (such as FLC's). The result is jumping pixels all over the scene, but
especially concentrated any place where aliasing would normally be a problem (e.g., where an infinite plane
disappears into the distance).

For this reason, we should always set jitter to of f in area lights and anti-aliasing options when preparing a scene for
an animation. The (relatively) small extra measure quality due to the use of jitter will be offset by the ocean of
jumpies that results. This general rule also applies to any truly random texture elements, such as cr and.

2.9.5.5 INI File Settings

Okay, so we have a grasp of how to code our file for animation. We know about the clock variable, user declared
clock-relative variables, and the phase keyword. We know not to jitter or crand when we render a scene, and we're
all set build some animations. Alright, let's have at it.

The first concept we'll need to know is the INI file settings, | ni ti al _Fr ame and Fi nal _Fr ame. These are very
handy settings that will allow us to render a particular number of frames and each with its own unique frame
number, in a completely hands free way. It is of course, so blindingly simple that it barely needs explanation, but
here's an example anyway. We just add the following lines to our favorite INI file settings

Initial _Frame = 1
Final _Frame = 20

and we'll initiate an automated loop that will generate 20 unique frames. The settings themselves will automatically
append a frame number onto the end of whatever we have set the output file name for, thus giving each frame an
unique file number without having to think about it. Secondly, by default, it will cycle the clock variable up from 0
to 1 in increments proportional to the number of frames. This is very convenient, since, no matter whether we are
making a five frame animated GIF or a 300 frame MPEG sequence, we will have a clock value which smoothly
cycles from exactly the same start to exactly the same finish.

Next, about that clock. In our example with the rolling ball code, we saw that sometimes we want the clock to cycle
through values other than the default of 0.0 to 1.0. Well, when that's the case, there are setting for that too. The
format is also quite simple. To make the clock run, as in our example, from 0.0 to 2.0, we would just add to your INI
file the lines

May 1999 POV-Ray 3.1g User Documentation Page 114

Initial _Cock = 0.0
Final Clock = 2.0

Now, suppose we were developing a sequence of 100 frames, and we detected a visual glitch somewhere in frames,
say 51 to 75. We go back over our code and we think we've fixed it. We'd like to render just those 25 frames instead
of redoing the whole sequence from the beginning. What do we change?

If we said make I nitial _Frane = 51,and Fi nal _Frane = 75, we're wrong. Even though this would re-
render files named with numbers 51 through 75, they will not properly fit into our sequence, because the clock will
begin at its initial value starting with frame 51, and cycle to final value ending with frame 75. The only time

I ni tial_Frame and Fi nal _Fr ame should change is if we are doing an essentially new sequence that will be
appended onto existing material.

If we wanted to look at just 51 through 75 of the original animation, we need two new INI settings

Subset _Start _Frame = 51
Subset End_Frame = 75

Added to settings from before, the clock will still cycle through its values proportioned from frames 1 to 100, but we
will only be rendering that part of the sequence from the 51st to the 75th frames.

This should give us a basic idea of how to use animation. Although, this introductory tutorial doesn't cover all the
angles. For example, the last two settings we just saw, subset animation, can take fractional values, like 0.5 to 0.75,
so that the number of actual frames will not change what portion of the animation is being rendered. There is also
support for efficient odd-even field rendering as would be useful for animations prepared for display in interlaced
playback such as television (see the reference section for full details).

With POV-Ray 3 now fully supporting a complete host of animation options, a whole fourth dimension is added to
the raytracing experience. Whether we are making a FLIC, AVI, MPEG, or simply an animated GIF for our web
site, animation support takes a lot of the tedium out of the process. And don't forget that phase and clock can be used
to explore the range of numerous texture elements, as well as some of the more difficult to master objects (hint: the
julia fractal for example). So even if we are completely content with making still scenes, adding animation to our
repertoire can greatly enhance our understanding of what POV-Ray is capable of. Adventure awaits!

May 1999 POV-Ray 3.1g User Documentation Page 115

3 POV-Ray Options

The reference section describes all command line switches and INI file keywords that are used to set the options of
POV-Ray. It is supposed to be used as a reference for looking up things. It does not contain detailed explanations on
how scenes are written or how POV-Ray is used. It just explains all features, their syntax, applications, limits,
drawbacks, etc.

POV-Ray was originally created as a command-line program for operating systems without graphical interfaces,
dialog boxes and pull-down menus. Most versions of POV-Ray still use command-line switches to tell it what to do.
This documentation assumes you are using the command-line version. If you are using Macintosh, MS-Windows or
other GUI versions, there will be dialog boxes or menus which do the same thing. There is system-specific
documentation for each system describing the specific commands.

3.1 Setting POV-Ray Options

There are two distinct ways of setting POV-Ray options: command line switches and INI file keywords. Both are
explained in detail in the following sections.

3.1.1 Command Line Switches

Command line switches consist of a + (plus) or - (minus) sign, followed by one or more alphabetic characters and
possibly a numeric value. Here is a typical command line with switches.

POVRAY +l si npl e. pov +V +W80 +H60

povr ay is the name of the program and it is followed by several switches. Each switch begins with a plus or minus
sign. The +1 switch with the filename tells POV-Ray what scene file it should use as input and +V tells the program
to output its status to the text screen as it's working. The +Wand +H switches set the width and height of the image
in pixels. This image will be 80 pixels wide by 60 pixels high.

In switches which toggle a feature, the plus turns it on and minus turns it off. For example +P turns on the pause for
keypress when finished option while - P turns it off. Other switches are used to specify values and do not toggle a
feature. Either plus or minus may be used in that instance. For example +\WB20 sets the width to 320 pixels. You
could also use - WB20 and get the same results.

Switches may be specified in upper or lower case. They are read left to right but in general may be specified in any
order. If you specify a switch more than once, the previous value is generally overwritten with the last specification.
The only exception is the +L switch for setting library paths. Up to ten unique paths may be specified.

Almost all + or - switches have an equivalent option which can be used in an INI file which is described in the next
section. A detailed description of each switch is given in the option reference section.

3.1.2 Using INI Files

Because it is difficult to set more than a few options on a command line, you have the ability to put multiple options
in one or more text files. These initialization files or INI files have .ini as their default extension. Previous versions
of POV-Ray called them default files or DEF files. You may still use existing DEF files with this version of POV-
Ray.

The majority of options you use will be stored in INI files. The command line switches are recommended for
options which you will turn off or on frequently as you perform test renderings of a scene you are developing. The
file povray. i ni isautomatically read if present. You may specify additional INI files on the command-line by
simply typing the file name on the command line. For example:

POVRAY MYOPTS. | NI

May 1999 POV-Ray 3.1g User Documentation Page 116

If no extension is given, then . i ni is assumed. POV-Ray knows this is not a switch because it is not preceded by a
plus or minus. In fact a common error among new users is that they forget to put the +1 switch before the input file
name. Without the switch, POV-Ray thinks that the scene file si npl e. pov is an INI file. Don't forget! If no plus

or minus precedes a command line switch, it is assumed to be an INI file name.

You may have multiple INI files on the command line along with switches. For example:
POVRAY MYOPTS +V OTHER
This reads options from myopt s. i ni , then sets the +V switch, then reads options from ot her . i ni .

An INI file is a plain ASCII text file with options of the form...

Opti on_keywor d=VALUE ; Text after senicolon is a conmrent
For example the INI equivalent of the switch +1 si npl e. pov is...

I nput _Fi | e_Nane=si npl e. pov

Options are read top to bottom in the file but in general may be specified in any order. If you specify an option more
than once, the previous values are generally overwritten with the last specification. The only exception is the
Li brary_Pat h=pat h options. Up to ten unique paths may be specified.

Almost all INI-style options have equivalent + or - switches. The option reference section gives a detailed
description of all POV-Ray options. It includes both the INI-style settings and the +/- switches.

The INI keywords are not case sensitive. Only one INI option is permitted per line of text. You may also include
switches in your INI file if they are easier for you. You may have multiple switches per line but you should not mix
switches and INI options on the same line. You may nest INI files by simply putting the file name on a line by itself
with no equals sign after it. Nesting may occur up to ten levels deep.

For example:

; This is a sanmple INI file. This entire line is a comrent.
; Blank lines are permtted.

I nput _Fil e Nane=sinple.pov ; This sets the input file nane
+WB0 +H60 ; Traditional +/- switches are permtted too
MOREOPT ; Read MOREOPT.IN and continue with next l|ine
+V ; Anot her switch

; That's all folks!

INI files may have labeled sections so that more than one set of options may be stored in a single file. Each section
begins with a label in [] brackets. For example:

; RES. I NI
; This sample INl file is used to set resolution.
+WL20 +H100 ; This section has no | abel.

; Select it with "RES"

[Low]

+W80 +H60 ; This section has a | abel.
; Select it with "RES[Low]"

[Med]

+WB20 +H200 ; This section has a | abel.
; Select it with "RES[Med]"

[Hi gh]

+Ws40 +H480 ; Labels are not case sensitive.
; "RES[hi gh]" works

[Real 'y High]

+WB00 +H600 ; Labels may contain bl anks
When you specify the INI file you should follow it with the section label in brackets. For example...
POVRAY RES[Med] +I nyfile. pov

May 1999 POV-Ray 3.1g User Documentation Page 117

POV-Ray reads r es. i ni and skips all options until it finds the label Med. It processes options after that label until
it finds another label and then it skips. If no label is specified on the command line then only the unlabeled area at
the top of the file is read. If a label is specified, the unlabeled area is ignored.

Because a blank space is considered a delimiter for command-line switches, POV-Ray has a difficult time reading
file names or INI labels containing blanks. The rule is that INI-style options allow blanks in INI files but switches
do not allow blanks whether in INI files or on the command line. For example:

+lny file.pov ;doesn't work anywhere
Input_File=ny file.pov ;works only in INl file

To nest INI files which have blanks in the file name or labels use the | ncl ude_I NI option like this:
I nput_File=ny file.pov
I ncl ude_I ni =my options[this section]

3.1.3 Using the POVINI Environment Variable

The environment variable POVINI is used to specify the location and name of a default INI file that is read every

time POV-Ray is executed. If POVINI is not specified, or if your computer platform does not use environment

variables, a default INI file may be read. If the specified file does not exist, a warning message is printed.

To set the environment variable under MS-DOS you might put the following line in your aut oexec. bat file...
set POVI NI =c:\povray3\default.ini

On most operating systems the sequence of reading options is as follows:

1. Read options from default INI file specified by the POVINI environment variable or platform specific INI file.
2. Read switches from command line (this includes reading any specified INI/DEF files).

The POVRAYOPT environment variable supported by previous POV-Ray versions is no longer available.

3.2 Options Reference

As explained in the previous section, options may be specified by switches or INI-style options. Almost all INI-style
options have equivalent +/ - switches and most switches have equivalent INI-style option. The following sections
give a detailed description of each POV-Ray option. It includes both the INI-style settings and the +/ - switches.

The notation and terminology used is described in the tables below.

Keywor d=bool Turn Keywor d on if bool equalst r ue, yes, on or 1 and
Turn it off if it is any other value.

Keywor d=t r ue Do this option if t r ue, yes, on or 1 is specified.

Keywor d=f al se Do this option if f al se, no, of f or O is specified.

Keywor d=filename Set Keywor d to filename where filename is any valid file name.

Note: some options prohibit the use of any of the above t r ue
or f al se values as a file name. They are noted in later

sections.
n Any integer such as in +\W820
n.n Any float such as in Cl ock=3. 45
0.n Any float < 1.0 even if it has no leading O
S Any string of text
xory Any single character
path Any directory name, drive optional, no final path separator ("\" or

"[", depending on the operating system)

Unless otherwise specifically noted, you may assume that either a plus or minus sign before a switch will produce
the same results.

May 1999 POV-Ray 3.1g User Documentation Page 118

3.2.1 Animation Options

POV-Ray 3.0 greatly improved its animation capability with the addition of an internal animation loop, automatic
output file name numbering and the ability to shell out to the operating system to external utilities which can
assemble individual frames into an animation. The internal animation loop is simple yet flexible. You may still use
external programs or batch files to create animations without the internal loop as you may have done in POV-Ray 2.

3.2.1.1 External Animation Loop

Cl ock=n.n Sets cl ock float identifier to n.n
+Kn.n Same as Cl ock=n.n

The C ock=n.n option or the +Kn.n switch may be used to pass a single float value to the program for basic
animation. The value is stored in the float identifier cl ock. If an objecthad ar ot at e <O, cl ock, 0> attached
then you could rotate the object by different amounts over different frames by setting +K10. 0,+K20. O... etc. on
successive renderings. It is up to the user to repeatedly invoke POV-Ray with a different Cl ock value and a
different Qut put _Fi | e_Nan® for each frame.

3.2.1.2 Internal Animation Loop

Initial Frame=n Sets initial frame number to n

Fi nal _Franme=n Sets final frame number to n
Initial C ock=n.n | Sets initial clock value to n.n

Fi nal _C ock=n.n Sets final clock value to n.n
+KFI n Sameas | nitial _Frame=n
+KFFn Same as Fi nal _Frame=n

+Kl n.n Sameas | nitial _C ock=n.n
+KFn.n Same as Fi nal _Cl ock=n.n

The internal animation loop new to POV-Ray 3.0 relieves the user of the task of generating complicated sets of
batch files to invoke POV-Ray multiple times with different settings. While the multitude of options may look

intimidating, the clever set of default values means that you will probably only need to specify the

Fi nal _Fr ane=n or the +KFFn option to specify the number of frames. All other values may remain at their

defaults.

Any Fi nal _Fr ame setting other than -1 will trigger POV-Ray's internal animation loop. For example

Fi nal _Frame=10 or +KFF10 causes POV-Ray to render your scene 10 times. If you specified

Qut put _Fi | e_Nane=fi | e. t ga then each frame would be outputasfi | eO1l. tga,fil e02.tga,

fil e03.t ga etc. The number of zero-padded digits in the file name depends upon the final frame number. For
example +KFF100 would generate f i | e001. t ga throughfi | €100. t ga. The frame number may encroach
upon the file name. On MS-DOS with an eight character limit, myscene. pov would render to mysce001. t ga
through myscel100. t ga.

The default | ni ti al _Fr ame=1 will probably never have to be changed. You would only change it if you were
assembling a long animation sequence in pieces. One scene might run from frame 1 to 50 and the next from 51 to
100. The I ni ti al _Fr ame=n or +KFI n option is for this purpose.

Note that if you wish to render a subset of frames such as 30 through 40 out of a 1 to 100 animation, you should not
change Frane_I ni ti al or Frame_Fi nal . Instead you should use the subset commands described in section
"Subsets of Animation Frames".

Unlike some animation packages, the action in POV-Ray animated scenes does not depend upon the integer frame
numbers. Rather you should design your scenes based upon the float identifier cl ock. By default, the clock value is
0.0 for the initial frame and 1.0 for the final frame. All other frames are interpolated between these values. For
example if your object is supposed to rotate one full turn over the course of the animation, you could specify

May 1999 POV-Ray 3.1g User Documentation Page 119

rotate 360*cl ock*y. Then as clock runs from 0.0 to 1.0, the object rotates about the y-axis from 0 to 360
degrees.

The major advantage of this system is that you can render a 10 frame animation or a 100 frame or 500 frame or 329
frame animation yet you still get one full 360 degree rotation. Test renders of a few frames work exactly like final
renders of many frames.

In effect you define the motion over a continuous float valued parameter (the clock) and you take discrete samples at
some fixed intervals (the frames). If you take a movie or video tape of a real scene it works the same way. An
object's actual motion depends only on time. It does not depend on the frame rate of your camera.

Many users have already created scenes for POV-Ray 2 that expect clock values over a range other than the default
0.0 to 1.0. For this reason we provide the | ni ti al _Cl ock=n.nor +KI n.nand Fi nal _Cl ock=n.n or +KFn.n
options. For example to run the clock from 25.0 to 75.0 you would specify I ni ti al _Cl ock=25. 0 and

Fi nal _C ock=75. 0. Then the clock would be set to 25.0 for the initial frame and 75.0 for the final frame. In-
between frames would have clock values interpolated from 25.0 through 75.0 proportionally.

Users who are accustomed to using frame numbers rather than clock values could specify | ni ti al _Cl ock=1. 0
and Fi nal _C ock=10. 0 and Fr ane_Fi nal =10 for a 10 frame animation.

For new scenes, we recommend you do not change the | ni ti al _Cl ock or Fi nal _Cl ock from their default 0.0
to 1.0 values. If you want the clock to vary over a different range than the default 0.0 to 1.0, we recommend you
handle this inside your scene file as follows...

#decl are Start 25.0;
#decl are End 75. 0;

#decl are My_d ock Start+(End-Start) *cl ock;

Then use My_Cl ock in the scene description. This keeps the critical values 25.0 and 75.0 in your .pov file.

Note that more details concerning the inner workings of the animation loop are in the section on shell-out operating
system commands in section "Shell-out to Operating System".

3.2.1.3 Subsets of Animation Frames

Subset _Start_Frame=n Set subset starting frame to n
Subset Start_ Franme=0.n | Setsubset starting frame to n percent
Subset End_Fr ame=n Set subset ending frame to n
Subset _End_Fr ane=0.n Set subset ending frame to n percent
+SFn or +SF0.n Same as Subset _Start_Frane
+EFn or +EF0.n Same as Subset End_Fr ane

When creating a long animation, it may be handy to render only a portion of the animation to see what it looks like.
Suppose you have 100 frames but only want to render frames 30 through 40. If you set | ni ti al _Fr ane=30 and
Fi nal _Fr ame=40 then the clock would vary from 0.0 to 1.0 from frames 30 through 40 rather than 0.30 through
0.40 as it should. Therefore you should leave | ni ti al _Franme=1 and Fi nal _Fr ane=100 and use

Subset _Start _Franme=30 and Subset _End_Fr ame=40 to selectively render part of the scene. POV-Ray
will then properly compute the clock values.

Usually you will specify the subset using the actual integer frame numbers however an alternate form of the subset
commands takes a float value in the range 0.0 <=n.nnn <=1.0 which is interpreted as a fraction of the whole
animation. For example, Subset _St art _Frane=0. 333 and Subset _End_Fr ame=0. 667 would render the
middle 1/3rd of a sequence regardless of the number of frames.

May 1999 POV-Ray 3.1g User Documentation Page 120

3.2.1.4 Cyclic Animation

Cycli c_Ani mat i on=bool Turn cyclic animation on/off
+KC Turn cyclic animation on
-KC Turn cyclic animation off

Many computer animation sequences are designed to be run in a continuous loop. Suppose you have an object that
rotates exactly 360 degrees over the course of your animation and you did r ot at e 360* cl ock*y to do so. Both
the first and last frames would be identical. Upon playback there would be a brief one frame jerkiness. To eliminate
this problem you need to adjust the clock so that the last frame does not match the first. For example a ten frame
cyclic animation should not use clock 0.0 to 1.0. It should run from 0.0 to 0.9 in 0.1 increments. However if you
change to 20 frames it should run from 0.0 to 0.95 in 0.05 increments. This complicates things because you would
have to change the final clock value every time you changed Fi nal _Fr ane. Setting Cycl i c_Ani mati on=on
or using +KC will cause POV-Ray to automatically adjust the final clock value for cyclic animation regardless of
how many total frames. The default value for this setting is off.

3.2.1.5 Field Rendering

Fi el d_Render =bool Turn field rendering on/off
Odd_Fi el d=bool Set odd field flag

+UF Turn field rendering on

- UF Turn field rendering off
+UO Set odd field flag on

- Uo Set odd field flag off

Field rendering is sometimes used for animations when the animation is being output for television. TVs only
display alternate scan lines on each vertical refresh. When each frame is being displayed the fields are interlaced to
give the impression of a higher resolution image. The even scan lines make up the even field, and are drawn first
(i.e. scan lines 0, 2, 4, etc.), followed by the odd field, made up of the odd numbered scan lines are drawn
afterwards. If objects in an animation are moving quickly, their position can change noticeably from one field to the
next. As a result, it may be desirable in these cases to have POV-Ray render alternate fields at the actual field rate
(which is twice the frame rate), rather than rendering full frames at the normal frame rate. This would save a great
deal of time compared to rendering the entire animation at twice the frame rate, and then only using half of each
frame.

By default, field rendering is not used. Setting Fi el d_Render =on or using +UF will cause alternate frames in an
animation to be only the even or odd fields of an animation. By default, the first frame is the even field, followed by
the odd field. You can have POV-Ray render the odd field first by specifying Odd_Fi el d=on, or by using the
+UOswitch.

3.2.2 OQutput Options
3.2.2.1 General Output Options

3.2.2.1.1 Height and Width of Output

Hei ght =n Sets screen height to n pixels

W dt h=n Sets screen width to n pixels

+Hn Same as Hei ght =n (when n > 8)
+Wh Same as W dt h=n

These switches set the height and width of the image in pixels. This specifies the image size for file output. The
preview display, if on, will generally attempt to pick a video mode to accommaodate this size but the display settings
do not in any way affect the resulting file output.

May 1999 POV-Ray 3.1g User Documentation Page 121

3.2.2.1.2 Partial Output Options

Start _Col um=n

Set first column to n pixels

Start _Col um=0.n

Set first column to n percent of width

+SCn or +SC0.n

Same as St art _Col um

Start _Row=n

Set first row to n pixels

Start_Row=0.n

Set first row to n percent of height

+SRn or +Sn

Same as St art _Row=n

+SR0.n or +S0.n

Same as St art _Row=0.n

End_Col um=n

Set last column to n pixels

End_Col um=0.n

Set last column to n percent of width

+ECn or +ECO.n Same as End_Col umm
End_Row=n Set last row to n pixels
End_Row=0.n Set last row to n percent of height
+ERn or +En Same as End_Row=n

+ERO0.n or +EO0.n

Same as End_Row=0.n

When doing test rendering it is often convenient to define a small, rectangular sub-section of the whole screen so
you can quickly check out one area of the image. The St art _Row, End_Row, St art _Col urm and

End_Col unm options allow you to define the subset area to be rendered. The default values are the full size of the
image from (1,1) which is the upper left to (w,h) on the lower right where w and h are the W dt h=n and

Hei ght =n values you have set.

Note if the number specified is greater than 1 then it is interpreted as an absolute row or column number in pixels. If
it is a decimal value between 0.0 and 1.0 then it is interpreted as a percent of the total width or height of the image.
For example: St art _Row=0. 75 and St art _Col unm=0. 75 starts on a row 75% down from the top at a
column 75% from the left. Thus it renders only the lower-right 25% of the image regardless of the specified width
and height.

The +SR, +ER, +SCand +EC switches work in the same way as the corresponding INI-style settings for both
absolute settings or percentages. Early versions of POV-Ray allowed only start and end rows to be specified with
+Sn and +En so they are still supported in addition to +SRand +ER.

3.2.2.1.3 Interrupting Options
Test _Abort =bool

Turn test for user abort on/off

+X Turn test abort on

- X Turn test abort off

Test _Abort _Count =n Set to test for abort every n pixels

+Xn Set to test for abort every n pixels on

- Xn Set to test for abort off (in future test every n
pixels)

On some operating systems once you start a rendering you must let it finish. The Test _Abor t =on option or +X
switch causes POV-Ray to test the keyboard for keypress. If you have pressed a key, it will generate a controlled
user abort. Files will be flushed and closed but only data through the last full row of pixels is saved. POV-Ray exits
with an error code 2 (normally POV-Ray returns 0 for a successful run or 1 for a fatal error).

When this option is on, the keyboard is polled on every line while parsing the scene file and on every pixel while
rendering. Because polling the keyboard can slow down a rendering, the Test _Abor t _Count =n option or +Xn
switch causes the test to be performed only every n pixels rendered or scene lines parsed.

3.2.2.1.4 Resuming Options

May 1999 POV-Ray 3.1g User Documentation Page 122

Cont i nue_Tr ace=bool

Sets continued trace on/off

+C

Sets continued trace on

-C

Sets continued trace off

Creat e_I ni =file

Generate an INI file to file

Cr eat e_I ni =true

Generate fi | e. i ni where file is scene name.

Cr eat e_I ni =false

Turn off generation of previously setfi |l e. i ni

+d file

Same as Cr eat e_| ni =file

If you abort a render while it's in progress or if you used the End_Row option to end the render prematurely, you
can use Cont i nue_Tr ace=on or +Coption to continue the render later at the point where you left off. This
option reads in the previously generated output file, displays the partial image rendered so far, then proceeds with
the ray-tracing. This option cannot be used if file output is disabled with Qut put _to_fil e=of f or-F.

The Cont i nue_Tr ace option may not work if the St ar t _Row option has been set to anything but the top of the
file, depending on the output format being used.

POV-Ray tries to figure out where to resume an interrupted trace by reading any previously generated data in the
specified output file. All file formats contain the image size, so this will override any image size settings specified.
Some file formats (namely TGA and PNG) also store information about where the file started (i. e. +SCn and +SRn
options), alpha output +UA, and bit-depth +FNn, which will override these settings. It is up to the user to make sure
that all other options are set the same as the original render.

The Creat e_| ni option or +@ switch provides an easy way to create an INI file with all of the rendering
options, so you can re-run files with the same options, or ensure you have all the same options when resuming. This
option creates an INI file with every option set at the value used for that rendering. This includes default values
which you have not specified. For example if you run POV-Ray with...

POVRAY +I si npl e. pov MYOPTS +d rerun.ini MOREOPTS

POV-Ray will create a file called r er un. i ni with all of the options used to generate this scene. The file is not
written until all options have been processed. This means that in the above example, the file will include options
from both myopt s. i ni and nor eopt s. i ni despite the fact that the +G switch is specified between them. You
may now re-run the scene with...

POVRAY RERUN
or resume an interrupted trace with
POVRAY RERUN +C

If you add other switches with the r er un. i ni reference, they will be included in future re-runs because the file is
re-written every time you use it.

The Cr eat e_I ni option is also useful for documenting how a scene was rendered. If you render waycool . pov
with Cr eat e_1 ni =on then it will create a file waycool . i ni that you could distribute along with your scene
file so other users can exactly re-create your image.

3.2.2.2 Display Output Options

3.2.2.2.1 Display Hardware Settings

Di spl ay=bool Turns graphic display on/off

+D Turns graphic display on

-D Turns graphic display off

Vi deo_Mbde=x Set video mode to x; does not affect on/off
+Dx Set display on; Set mode to x

- Dx Set display off; but for future use mode x

May 1999 POV-Ray 3.1g User Documentation Page 123

Pal ett e=y Set display palette to y; does not affect on/off
+Dxy Set display on; Set mode x; Set palette y

- Dxy Set display off; use mode x, palette y in future
Di spl ay_Gama=n.n Sets the display gamma to n.n

The Di spl ay=on or +Dswitch will turn on the graphics display of the image while it is being rendered. Even on
some non-graphics systems, POV-Ray may display an 80 by 24 character "ASCII-Art" version of your image.
Where available, the display may be full, 24-bit true color. Setting Di spl ay=of f or using the - D switch will turn
off the graphics display which is the default.

The Vi deo_Mbde=x option sets the display mode or hardware type chosen where X is a single digit or letter that is
machine dependent. Generally Vi deo_Mbde=0 means the default or an auto-detected setting should be used.
When using switches, this character immediately follows the switch. For example the +DO switch will turn on the
graphics display in the default mode.

The Pal et t e=y option selects the palette to be used. Typically the single character parameter y is a digit which
selects one of several fixed palettes or a letter such Gfor gray scale, Hfor 15-bit or 16-bit high color or T for 24-bit
true color. When using switches, this character is the 2nd character after the switch. For example the +DOT switch
will turn on the graphics display in the default mode with a true color palette.

The Di spl ay_Ganma=n.n setting is new with POV-Ray 3.0, and is not available as a command-line switch. The
Di spl ay_Gama setting overcomes the problem of images (whether ray-traced or not) having different brightness
when being displayed on different monitors, different video cards, and under different operating systems. Note that
the Di spl ay_Ganmm is a setting based on your computer's display hardware, and should be set correctly once and
not changed. The Di spl ay_Gamma INI setting works in conjunction with the new assuned_ganma global
setting to ensure that POV scenes and the images they create look the same on all systems. See section
"Assumed_Gamma" which describes the assumed_gama global setting and describes gamma more thoroughly.

While the Di spl ay_Gamma can be different for each system, there are a few general rules that can be used for
setting Di spl ay_Gamma if you don't know it exactly. If the Di spl ay_Ganmma keyword does not appear in the
INI file, POV-Ray assumes that the display gamma is 2.2. This is because most PC monitors have a gamma value in
the range 1.6 to 2.6 (newer models seem to have a lower gamma value). Mac has the ability to do gamma correction
inside the system software (based on a user setting in the gamma control panel). If the gamma control panel is turned
off, or is not available, the default Macintosh system gamma is 1.8. Some high-end PC graphics cards can do
hardware gamma correction and should use the current Display_Gamma setting, usually 1.0. A gamma test image is
also available to help users to set their Di spl ay_Gammra accurately.

For scene files that do not contain an assumed_ganma global setting the INI file option Di spl ay_Ganma will
not have any affect on the preview output of POV-Ray or for most output file formats. However, the

Di spl ay_Gamma value is used when creating PNG format output files, and also when rendering the POV-Ray
example files (because they have an assuned_ganmma), so it should still be correctly set for your system to ensure
proper results.

3.2.2.2.2 Display Related Settings

Pause_When_Done=bool Sets pause when done on/off
+P Sets pause when done on
-P Sets pause when done off
Ver bose=hool Set verbose messages on/off
+V Set verbose messages on

-V Set verbose messages off

Dr aw_Vi st as=bool Turn draw vistas on/off
+UD Turn draw vistas on

-UD Turn draw vistas off

May 1999 POV-Ray 3.1g User Documentation Page 124

On some systems, when the image is complete, the graphics display is cleared and POV-Ray switches back into text
mode to print the final statistics and to exit. Normally when the graphics display is on, you want to look at the image
awhile before continuing. Using Pause_When_Done=on or +P causes POV-Ray to pause in graphics mode until
you press a key to continue. The default is not to pause (- P).

When the graphics display is not used, it is often desirable to monitor progress of the rendering. Using

Ver bose=on or +V turns on verbose reporting of your rendering progress. This reports the number of the line
currently being rendered, the elapsed time for the current frame and other information. On some systems, this textual
information can conflict with the graphics display. You may need to turn this off when the display is on. The default
setting is off (- V).

The option Dr aw_Vi st as=on or +UD was originally a debugging help for POV-Ray's vista buffer feature but it
was such fun we decided to keep it. Vista buffering is a spatial sub-division method that projects the 2-D extents of
bounding boxes onto the viewing window. POV-Ray tests the 2-D X, y pixel location against these rectangular areas
to determine quickly which objects, if any, the viewing ray will hit. This option shows you the 2-D rectangles used.
The default setting is off (- UD) because the drawing of the rectangles can take considerable time on complex scenes
and it serves no critical purpose. See section "Automatic Bounding Control" for more details.

3.2.2.2.3 Mosaic Preview

Preview Start_Si ze=n Set mosaic preview start size to n
+SPn Same as Preview_Start_Size=n
Previ ew End_Si ze=n Set mosaic preview end size to n
+EPn Same as Preview_End_Size=n

Typically, while you are developing a scene, you will do many low resolution test renders to see if objects are
placed properly. Often this low resolution version doesn't give you sufficient detail and you have to render the scene
again at a higher resolution. A feature called "mosaic preview" solves this problem by automatically rendering your
image in several passes.

The early passes paint a rough overview of the entire image using large blocks of pixels that look like mosaic tiles.
The image is then refined using higher resolutions on subsequent passes. This display method very quickly displays
the entire image at a low resolution, letting you look for any major problems with the scene. As it refines the image,
you can concentrate on more details, like shadows and textures. You don't have to wait for a full resolution render to
find problems, since you can interrupt the rendering early and fix the scene, or if things look good, you can let it
continue and render the scene at high quality and resolution.

To use this feature you should first select a W dt h and Hei ght value that is the highest resolution you will need.
Mosaic preview is enabled by specifying how big the mosaic blocks will be on the first pass using

Previ ew_St art _Si ze=n or +SPn. The value n should be a number greater than zero that is a power of two (1,
2,4,8, 16, 32, etc.) If it is not a power of two, the nearest power of two less than n is substituted. This sets the size
of the squares, measured in pixels. A value of 16 will draw every 16th pixel as a 16*16 pixel square on the first pass.
Subsequent passes will use half the previous value (such as 8*8, 4*4 and so on.)

The process continues until it reaches 1*1 pixels or until it reaches the size you set with Pr evi ew_End_Si ze=n
or +EPn. Again the value n should be a number greater than zero that is a power of two and less than or equal to
Preview Start_Si ze. Ifitis not a power of two, the nearest power of two less than n is substituted. The
default ending value is 1. If you set Pr evi ew_End_Si ze to a value greater than 1 the mosaic passes will end
before reaching 1*1, but POV-Ray will always finish with a 1*1. For example, if you want a single 8*8 mosaic pass
before rendering the final image, set Previ ew _Start _Si ze=8 and Pr evi ew_End_Si ze=8.

No file output is performed until the final 1*1 pass is reached. Although the preliminary passes render only as many
pixels as needed, the 1*1 pass re-renders every pixel so that anti-aliasing and file output streams work properly. This
makes the scene take up to 25% longer than the regular 1*1 pass to render, so it is suggested that mosaic preview not
be used for final rendering. Also, the lack of file output until the final pass means that renderings which are
interrupted before the 1*1 pass can not be resumed without starting over from the beginning.

May 1999 POV-Ray 3.1g User Documentation Page 125

Future versions of POV-Ray will include some system of temporary files or buffers which will eliminate these
inefficiencies and limitations. Mosaic preview is still a very useful feature for test renderings.

3.2.2.3 File Output Options

Qut put _to_Fi | e=bool Sets file output on/off
+F Sets file output on (use default type)
-F Sets file output off

By default, POV-Ray writes an image file to disk. When you are developing a scene and doing test renders, the
graphic preview may be sufficient. To save time and disk activity you may turn file output off with
Qutput _to_File=off or-F.

3.2.2.3.1 Output File Type

Qut put _Fil e_Type=x Sets file output format to x

+Fxn Sets file output on; sets format x, depth n

- Fxn Sets file output off; but in future use format x, depth n
Qut put _Al pha=bool Sets alpha output on/off

+UA Sets alpha output on

- UA Sets alpha output off

Bits_Per Col or=n Sets file output bits/color to n

The default type of image file depends on which platform you are using. MS-DOS and most others default to 24-bit
uncompressed Targa. See your platform-specific documentation to see what your default file type is. You may select
one of several different file types using Qut put _Fi | e_Type=x or +Fx where x is one of the following...

+FC | Compressed Targa-24 format (RLE, run length encoded)
+FN | New PNG (portable network graphics) format

+FP | Unix PPM format

+FS | System-specific such as Mac Pict or Windows BMP
+FT | Uncompressed Targa-24 format

Note that the obsolete +FD dump format and +FR raw format have been dropped from POV-Ray 3.0 because they
were rarely used and no longer necessary. PPM, PNG, and system specific formats have been added. PPM format
images are uncompressed, and have a simple text header, which makes it a widely portable image format. PNG is a
new image format designed not only to replace GIF, but to improve on its shortcomings. PNG offers the highest
compression available without loss for high quality applications, such as ray-tracing. The system specific format
depends on the platform used and is covered in the appropriate system specific documentation.

Most of these formats output 24 bits per pixel with 8 bits for each of red, green and blue data. PNG allows you to
optionally specify the output bit depth from 5 to 16 bits for each of the red, green, and blue colors, giving from 15 to
48 bits of color information per pixel. The default output depth for all formats is 8 bits/color (16 million possible
colors), but this may be changed for PNG format files by setting Bi t s_Per _Col or =n or by specifying +FNn,
where n is the desired bit depth.

Specifying a smaller color depth like 5 bits/color (32768 colors) may be enough for people with 8- or 16-bit (256 or
65536 color) displays, and will improve compression of the PNG file. Higher bit depths like 10 or 12 may be useful
for video or publishing applications, and 16 bits/color is good for grayscale height field output (See section "Height
Field" for details on height fields).

Targa format also allows 8 bits of alpha transparency data to be output, while PNG format allows 5 to 16 bits of
alpha transparency data, depending on the color bit depth as specified above. You may turn this option on with

Qut put _Al pha=on or +UA. The default is off or - UA. See section "Using the Alpha Channel" for further details
on transparency.

May 1999 POV-Ray 3.1g User Documentation Page 126

In addition to support for variable bit-depths, alpha channel, and grayscale formats, PNG files also store the

Di spl ay_Gamma value so the image displays properly on all systems (see section "Display Hardware Settings").
The hf _gr ay_16 global setting, as described in section "HF_Gray_16" will also affect the type of data written to
the output file.

3.2.2.3.2 Output File Name

Qut put _Fi | e_Nane=file Sets output file to file
+CXile Same as Qut put _Fi | e_Nare=file

The default output filename is created from the scene name and need not be specified. The scene name is the input
name with all drive, path, and extension information stripped. For example if the input file name is

c:\ povray3\ nystuff\nyfile.pov the scene name is nyfi | e. The proper extension is appended to the
scene name based on the file type. For example nyfi |l e. t ga or myfi | e. png might be used.

You may override the default output name using Qut put _Fi | e_Nane=file or +Cfile. For example:

| nput _Fi | e_Nane=nyi nput . pov
Qut put _Fi | e_Name=nyout put .t ga

If an output file name of "-" is specified (a single minus sign), then the image will be written to standard output,
usually the screen. The output can then be piped into another program or to a GUI if desired.

If the file specified is actually a path or directory or folder name and not a file name, then the default output name is
used but it is written to the specified directory. For example:

I nput _Fi | e_Nane=nyscene. pov
Qut put _Fi | e_Nane=c: \ povr ay3\ nyi mages\

This will create c: \ povr ay3\ nyi mages\ nyscene. t ga as the output file.

3.2.2.3.3 Output File Buffer
Buf f er _Qut put =bool Turn output buffering on/off

+B Turn output buffering on
-B Turn output buffering off
Buf fer _Si ze=n Set output buffer size to n kilobytes. If n is zero,

no buffering. If n < system default, the system
default is used.

+Bn Turn buffer on, set size n
- Bn Turn buffer off, but for future set size n

The Buf f er _Qut put and Buf f er _Si ze options and the +B switch allows you to assign large buffers to the
output file. This reduces the amount of time spent writing to the disk. If this parameter is not specified, then as each
row of pixels is finished, the line is written to the file and the file is flushed. On most systems, this operation ensures
that the file is written to the disk so that in the event of a system crash or other catastrophic event, at least a part of
the picture has been stored properly and retrievable on disk. The default is not to use any buffer.

3.2.2.4 CPU Utilization Histogram

The CPU utilization histogram is a way of finding out where POV-Ray is spending its rendering time, as well as an
interesting way of generating heightfields. The histogram splits up the screen into a rectangular grid of blocks. As
POV-Ray renders the image, it calculates the amount of time it spends rendering each pixel and then adds this time
to the total rendering time for each grid block. When the rendering is complete, the histogram is a file which
represents how much time was spent computing the pixels in each grid block.

Not all versions of POV-Ray allow the creation of histograms. The histogram output is dependent on the file type
and the system that POV-Ray is being run on.

May 1999 POV-Ray 3.1g User Documentation Page 127

3.2.2.4.1 File Type
H st ogram Type=y Set histogram type to y (Turn off if type is 'X)
+HTy Same as Hi st ogr am Type=y

The histogram output file type is nearly the same as that used for the image output file types in "Output File Type".
The available histogram file types are as follows.

+HTC Comma separated values (CSV) often used in spreadsheets
+HTN New PNG (portable network graphics) format grayscale
+HTP Unix PPM format

+HTS System-specific such as Mac Pict or Windows BMP
+HTT Uncompressed Targa-24 format (TGA)

+HTX No histogram file output is generated

Note that +HTC does not generate a compressed Targa-24 format output file but rather a text file with a comma-
separated list of the time spent in each grid block, in left-to-right and top-to bottom order. The units of time output to
the CSV file are system dependent. See the system specific documentation for further details on the time units in
CSV files.

The Targa and PPM format files are in the POV heightfield format (see "Height Field"), so the histogram
information is stored in both the red and green parts of the image, which makes it unsuitable for viewing. When used
as a height field, lower values indicate less time spent calculating the pixels in that block, while higher indicate more
time spent in that block.

PNG format images are stored as grayscale images and are useful for both viewing the histogram data as well as for
use as a heightfield. In PNG files, the darker (lower) areas indicate less time spent in that grid block, while the
brighter (higher) areas indicate more time spent in that grid block.

3.2.2.4.2 File Name

Hi st ogr am Nane=file Set histogram name to file
+HNfile Same as Hi st ogr am_Name=file

The histogram file name is the name of the file in which to write the histogram data. If the file name is not specified
it will default to hi st gr am ext , where ext is based on the file type specified previously. Note that if the
histogram name is specified the file name extension should match the file type.

3.2.2.43 Grid Size

Hi st ogram Gri d_Si ze=nn.mm Set histogram grid to nn by mm
+HSnn.mm Same as Hi st ogram Gri d_Si ze=nn.mm

The histogram grid size gives the number of times the image is split up in both the horizontal and vertical directions.
For example

povray +lsanple +W40 +H480 +HTN +HS160. 120 +HNhi st ogr m png

will split the image into 160*120 grid blocks, each of size 4*4 pixels, and output a PNG file, suitable for viewing or
for use as a heightfield. Smaller numbers for the grid size mean more pixels are put into the same grid block. With
CSV output, the number of values output is the same as the number of grid blocks specified. For the other formats
the image size is identical to the rendered image rather than the specified grid size, to allow easy comparison
between the histogram and the rendered image. If the histogram grid size is not specified, it will default to the same
size as the image, so there will be one grid block per pixel.

Note that on systems that do task-switching or multi-tasking the histogram may not exactly represent the amount of
time POV-Ray spent in a given grid block since the histogram is based on real time rather than CPU time. As a
result, time may be spent for operating system overhead or on other tasks running at the same time. This will cause
the histogram to have speckling, noise or large spikes. This can be reduced by decreasing the grid size so that more
pixels are averaged into a given grid block.

May 1999 POV-Ray 3.1g User Documentation Page 128

3.2.3 Scene Parsing Options

POV-Ray reads in your scene file and processes it to create an internal model of your scene. The process is called
par si ng. As your file is parsed other files may be read along the way. This section covers options concerning
what to parse, where to find it and what version specific assumptions it should make while parsing it.

3.2.3.1 Input File Name

I nput _Fi | e_Nane=file Sets input file name to file
+l file Same as | nput _Fi | e_Nane=file

You will probably always set this option but if you do not the default input filename is obj ect . pov. If you do not
have an extension then . pov is assumed. On case-sensitive operating systems both . pov and . POV are tried. A
full path specification may be used (on MS-DOS systems +I c: \ povr ay3\ nyst uf f\ nyfil e. pov is allowed
for example). In addition to specifying the input file name this also establishes the scene name.

The scene name is the input name with drive, path and extension stripped. In the above example the scene name is
nyfi | e. This name is used to create a default output file name and it is referenced other places.

If you use "-" as the input file name the input will be read from standard input. Thus you can pipe a scene created by
a program to POV-Ray and render it without having a scene file.
Under MS-DOS you can try this feature by typing.

type ANYSCENE. POV | povray +l -

3.2.3.2 Library Paths

Li brary_Pat h=path Add path to list of library paths
+Lpath Same as Li brary_Pat h=path

POV-Ray looks for files in the current directory. If it does not find a file it needs it looks in various other library
directories which you specify. POV-Ray does not search your operating system path. It only searches the current
directory and directories which you specify with this option. For example the standard include files are usually kept
in one special directory. You tell POV-Ray to look there with...

Li brary_Pat h=c: \ povray3\i ncl ude
You must not specify any final path separators ("\" or "/") at the end.
Multiple uses of this option switch do not override previous settings. Up to twenty unique paths may be specified. If

you specify the exact same path twice it is only counts once. The current directory will be searched first followed by
the indicated library directories in the order in which you specified them.

3.2.3.3 Language Version

Ver si on=n.n Set initial language compatibility to version n.n
+MVn.n Same as Ver si on=n.n

As POV-Ray as evolved from version 1.0 through 3.1 we have made every effort to maintain some amount of
backwards compatibility with earlier versions. Some old or obsolete features can be handled directly without any
special consideration by the user. Some old or obsolete features can no longer be handled at all. However some old
features can still be used if you warn POV-Ray that this is an older scene. In the POV-Ray scene language you can
use the #ver si on directive to switch version compatibility to different setting. See section "The #version
Directive" for more details about the language version directive. Additionally you may use the Ver si on=n.n
option or the +Mvn.n switch to establish the initial setting. For example one feature introduced in 2.0 that was
incompatible with any 1.0 scene files is the parsing of float expressions. Setting Ver si on=1. 0 or using +MV1. 0
turns off expression parsing as well as many warning messages so that nearly all 1.0 files will still work. Naturally
the default setting for this option is Ver si on=3. 1.

May 1999 POV-Ray 3.1g User Documentation Page 129

NOTE: Some obsolete or re-designed features are totally unavailable in POV-Ray 3.1 REGARDLES OF THE
VERSION SETTING. Details on these features are noted throughout this documentation.

3.2.4 Shell-out to Operating System

Pre_Scene_Comuand=s Set command before entire scene
Pre_Frame_Comuand=s Set command before each frame

Post _Scene_Conmand=s Set command after entire scene

Post Fr ane_Conmand=s Set command after each frame

User _Abort_Conmand=s Set command when user aborts POV-Ray
Fatal _Error _Command=s Set command when POV-Ray has fatal error

Note that no + or - switches are available for these options. They cannot be used from the command line. They may
only be used from INI files.

POV-Ray offers you the opportunity to shell-out to the operating system at several key points to execute another
program or batch file. Usually this is used to manage files created by the internal animation loop however the shell
commands are available for any scene. The string s is a single line of text which is passed to the operating system to
execute a program. For example

Post _Scene_Conmand=t ga2gif -d -mnyfile

would use the utility t ga2gi f with the - Dand - Mparameters to convert myfi |l e. t gatonyfil e. gi f after the
scene had finished rendering.

3.2.4.1 String Substitution in Shell Commands
It could get cumbersome to change the Post _Scene_Conmmand every time you changed scene names. POV-Ray
can substitute various values into a command string for you. For example:

Post _Scene_Command=t ga2gif -d -m %

POV-Ray will substitute the % with the scene name in the command. The scene name is the | nput _Fi | e_Nan®e
or +| setting with any drive, directory and extension removed. For example:

I nput _Fi | e_Nane=c:\ povray3\scenes\waycool . pov
is stripped down to the scene name waycool which results in...
Post _Scene_Conmand=t ga2gi f -d - m waycool

In an animation it may be necessary to have the exact output file name with the frame number included. The string
%o will substitute the output file name. Suppose you want to save your output files in a zip archive using the utility

program pkzi p. You could do...
Post Frane_Command=pkzip -m % %0

After rendering frame 12 of nyscene. pov POV-Ray would shell to the operating system with
pkzip -m nmyscene nysce0l2.tga

The - Mswitch in pkzi p moves mysce012. t ga to nyscene. zi p and removes it from the directory. Note that
%o includes frame numbers only when in an animation loop. During the Pr e_Scene_Conmand and

Post _Scene_Conmand there is no frame number so the original, unnumbered Qut put _Fi | e_Nane is used.
Any User _Abort _Commrand or Fat al _Err or _Conmand not inside the loop will similarly give an
unnumbered %® substitution.

Here is the complete list of substitutions available for a command string.

% Output file name with extension and embedded frame number if any
% Scene name derived by stripping path and ext from input name
9 Frame number of this frame

May 1999 POV-Ray 3.1g User Documentation Page 130

oK Clock value of this frame
% Height of image in pixels
% Width of image in pixels
980 A single % sign.

3.2.4.2 Shell Command Sequencing

Here is the sequence of events in an animation loop. Non-animated scenes work the exact same way except there is
no loop.

1) Process all INI file keywords and command line switches just once.
2) Open any text output streams and do Cr eat e_I NI if any.
3) Execute Pre_Scene_Conmand if any.
4) Loop through frames (or just do once on non-animation).
a) Execute Pre_Frane_Conmand if any.
b) Parse entire scene file, open output file and read settings, turn on display, render the frame, destroy all
objects, textures etc., close output file, close display.
c) Execute Post _Frame_Command if any.
d) Go back to (4a) until all frames are done.
5) Execute Post _Scene_Comrand if any.
6) Exit POV-Ray.

If the user interrupts processing the User _Abor t _Conmand, if any, is executed. User aborts can only occur
during the parsing and rendering parts of step (4b) above.

If a fatal error occurs that POV-Ray notices the Fat al _Er r or _Conmand, if any, is executed. Sometimes an
unforeseen bug or memory error could cause a total crash of the program in which case there is no chance to shell
out. Fatal errors can occur just about anywhere including during the processing of switches or INI files. If a fatal
error occurs before POV-Ray has read the Fat al _Er r or _Command string then obviously no shell can occur.

Note that the entire scene is re-parsed for every frame. Future versions of POV-Ray may allow you to hold over
parts of a scene from one frame to the next but for now it starts from scratch every time. Note also that the

Pre_Fr ame_Comand occurs before the scene is parsed. You might use this to call some custom scene
generation utility before each frame. This utility could rewrite your . pov or . i nc files if needed. Perhaps you will
want to generate new . gi f or . t ga files for image maps or height fields on each frame.

3.2.4.3 Shell Command Return Actions

Pre_Scene_Ret urn=s Set pre scene return actions
Pre_Franme_Ret ur n=s Set pre frame return actions
Post _Scene_Ret ur n=s Set post scene return actions
Post _Franme_Ret ur n=s Set post frame return actions
User Abort _Return=s Set user abort return actions
Fatal Error_Return=s Set fatal return actions

Note that no + or - switches are available for these options. They cannot be used from the command line. They may
only be used from INI files.

Most operating systems allow application programs to return an error code if something goes wrong. When POV-
Ray executes a shell command it can make use of this error code returned from the shell process and take some
appropriate action if the code is zero or non-zero. POV-Ray itself returns such codes. It returns 0 for success, 1 for
fatal error and 2 for user abort.

The actions are designated by a single letter in the different . . . _Ret ur n=s options. The possible actions are:

I ignore the code
S | skip one step

May 1999 POV-Ray 3.1g User Documentation Page 131

all steps skipped

quit POV-Ray immediately
generate a user abort in POV-Ray
generate a fatal error in POV-Ray

T C|O| >

For example if your Pr e_Fr anme_Conmand calls a program which generates your height field data and that utility
fails then it will return a non-zero code. We would probably want POV-Ray to abort as well. The option
Pre_Frame_Ret ur n=F will cause POV-Ray to do a fatal abort if the Pr e_Fr ame_Cormand returns a non-
zero code.

Sometimes a non-zero code from the external process is a good thing. Suppose you want to test if a frame has
already been rendered. You could use the S action to skip this frame if the file is already rendered. Most utilities
report an error if the file is not found. For example the command...

pkzip -V nmyscene nysce0l2.tga

tells pkzip you want to view the catalog of myscene. zi p for the file mysce012. t ga. If the file isn't in the
archive pkzi p returns a non-zero code.

However we want to skip if the file is found. Therefore we need to reverse the action so it skips on zero and doesn't
skip on non-zero. To reverse the zero vs. non-zero triggering of an action precede it with a "- ** sign (note a will

also work since it is used in many programming languages as a negate operator).

Pre_Frame_Ret ur n=Swill skip if the code shows error (non-zero) and will proceed normally on no error (zero).
Pr e_Frame_Ret ur n=- Swill skip if there is no error (zero) and will proceed normally if there is an error (non-
zero).

The default for all shells is | which means that the return action is ignored no matter what. POV-Ray simply
proceeds with whatever it was doing before the shell command. The other actions depend upon the context. You
may want to refer back to the animation loop sequence chart in the previous section "Shell Command Sequencing".
The action for each shell is as follows.

On return from any User _Abor t _Conmmand if there is an action triggered...

and you have specified... ... then POV-Ray will..

F Then turn this user abort into a fatal error.
Do the Fat al _Er r or _Conmand, if any.
Exit POV-Ray with error code 1.

S,A QorU Then proceed with the user abort.

Exit POV-Ray with error code 2.

On return from any Fat al _Er r or _Conmand then POV-Ray will proceed with the fatal error no matter what. It
will exit POV-Ray with error code 1.

On return from any Pr e_Scene_Conmand, Pre_Fr ane_Conmmand, Post _Fr ame_Conmand or
Post _Scene_Conmands if there is an action triggered...

...and you have specified... ... then POV-Ray will...

F ...turn this user abort into a fatal error. Do the

Fat al _Error _Conmand, if any. Exit
POV-Ray with error code 1.

U ...generate a user abort. Do the

User _Abort _Commrand, if any. Exit POV-
Ray with an error code 2.

Q ..quit POV-Ray immediately. Acts as though
POV-Ray never really ran. Do no further
shells, (not even a Post _Scene_Comrand)
and exit POV-Ray with an error code 0.

May 1999 POV-Ray 3.1g User Documentation Page 132

On return from a Pr e_Scene_Conmand if there is an action triggered...

...and you have specified... ... then POV-Ray will...

S ...skip rendering all frames. Acts as though the
scene completed all frames normally. Do not
do any Pre_Frame_Command or

Post _Frane_Commands. Do the

Post _Scene_Conmand, if any. Exit POV-
Ray with error code 0. On the earlier chart this
means sKip step #4.

A ...skip all scene activity. Works exactly like Qquit.
On the earlier chart this means skip to step #6.
Acts as though POV-Ray never really ran. Do
no further shells, (not even a

Post _Scene_Conmand) and exit POV-
Ray with an error code 0.

On return from a Pr e_Fr ane_Conmand if there is an action triggered...

...and you have specified... ... then POV-Ray will...

S ...skip only this frame. Acts as though this frame
never existed. Do not do the

Post _Fr ane_Conmand. Proceed with the
next frame. On the earlier chart this means
skip steps (4b) and (4c) but loop back as
needed in (4d).

A ...skip rendering this frame and all remaining
frames. Acts as though the scene completed
all frames normally. Do not do any further
Post _Frane_Commands. Do the

Post _Scene_Conmand, if any. Exit POV-
Ray with error code 0. On the earlier chart this
means skip the rest of step (4) and proceed at
step (5).

On return from a Post _Fr ame_Comrand if there is an action triggered...

...and you have specified... ... then POV-Ray will...

SorA ...skip all remaining frames. Acts as though the
scene completed all frames normally. Do not
do any further Post _Fr ane_Conmands.
Do the Post _Scene_Command, if any. Exit
POV-Ray with error code 0. On the earlier
chart this means skip the rest of step (4) and
proceed at step (5).

On return from any Post _Scene_Conmand if there is an action triggered and you have specified S or A then no
special action occurs. This is the same as | for this shell command.

3.2.5 Text Output

Text output is an important way that POV-Ray keeps you informed about what it is going to do, what it is doing and
what it did. New to POV-Ray 3.0, the program splits its text messages into 7 separate streams. Some versions of
POV-Ray color-codes the various types of text. Some versions allow you to scroll back several pages of messages.
All versions allow you to turn some of these text streams off/on or to direct a copy of the text output to one or
several files. This section details the options which give you control over text output.

May 1999 POV-Ray 3.1g User Documentation Page 133

3.2.5.1 Text Streams

There are seven distinct text streams that POV-Ray uses for output. On some versions each stream is designated by a
particular color. Text from these streams are displayed whenever it is appropriate so there is often an intermixing of
the text. The distinction is only important if you choose to turn some of the streams off or to direct some of the
streams to text files. On some systems you may be able to review the streams separately in their own scroll-back
buffer.

Here is a description of each stream.

Banner: This stream displays the program’s sign-on banner, copyright, contributor's list, and some help screens. It
cannot be turned off or directed to a file because most of this text is displayed before any options or switches are
read. Therefore you cannot use an option or switch to control it. There are switches which display the help screens.
They are covered in section "Help Screen Switches".

Debug: This stream displays debugging messages. It was primarily designed for developers but this and other
streams may also be used by the user to display messages from within their scene files. See section "Text Message
Streams" for details on this feature. This stream may be turned off and/or directed to a text file.

Fatal: This stream displays fatal error messages. After displaying this text, POV-Ray will terminate. When the error
is a scene parsing error, you may be shown several lines of scene text that leads up to the error. This stream may be
turned off and/or directed to a text file.

Render: This stream displays information about what options you have specified to render the scene. It includes
feedback on all of the major options such as scene name, resolution, animation settings, anti-aliasing and others.
This stream may be turned off and/or directed to a text file.

Statistics: This stream displays statistics after a frame is rendered. It includes information about the number of rays
traced, the length of time of the processing and other information. This stream may be turned off and/or directed to a
text file.

Status: This stream displays one-line status messages that explain what POV-Ray is doing at the moment. On some
systems this stream is displayed on a status line at the bottom of the screen. This stream cannot be directed to a file
because there is generally no need to. The text displayed by the Ver bose option or +V switch is output to this
stream so that part of the status stream may be turned off.

Warning: This stream displays warning messages during the parsing of scene files and other warnings. Despite the
warning, POV-Ray can continue to render the scene. You will be informed if POV-Ray has made any assumptions
about your scene so that it can proceed. In general any time you see a warning, you should also assume that this
means that future versions of POV-Ray will not allow the warned action. Therefore you should attempt to eliminate
warning messages so your scene will be able to run in future versions of POV-Ray. This stream may be turned off
and/or directed to a text file.

3.2.5.2 Console Text Output

Debug_Consol e=hool Turn console display of debug info text on/off
+@D Same as Debug_Consol e=On

-G Same as Debug_Consol e=Cf f

Fat al _Consol e=bool Turn console display of fatal error text on/off
+GF Same as Fat al _Consol e=On

-GF Same as Fat al _Consol e=CF f

Render _Consol e=bool Turn console display of render info text on/off
+&R Same as Render _Consol e=On

-GR Same as Render _Consol e=Cf f
Statistic_Consol e=bool Turn console display of statistic text on/off

May 1999 POV-Ray 3.1g User Documentation Page 134

+GS Same as St ati sti c_Consol e=(n

-GS Same as St ati sti c_Consol e=Of f

War ni ng_Consol e=bool Turn console display of warning text on/off

+GW Same as War ni ng_Consol e=On

- GW Same as War ni ng_Consol e=Cf f

Al | _Consol e=bool Turn on/off all debug, fatal, render, statistic and
warning text to console.

+GA Same as Al | _Consol e=(n

-GA Same as Al | _Consol e=OF f

You may suppress the output to the console of the debug, fatal, render, statistic or warning text streams. For example
the St ati sti c_Consol e=of f option or the - GS switch can turn off the statistic stream. Using on or +GS you
may turn it on again. You may also turn all five of these streams on or off at once using the Al | _Consol e option
or +GA switch.

Note that these options take effect immediately when specified. Obviously any error or warning messages that might
occur before the option is read are not be affected.

3.2.5.3 Directing Text Streams to Files

Debug_Fi |l e=true Echo debug info text to DEBUG. OUT

Debug_Fi | e=f al se Turn off file output of debug info

Debug_Fi | e=file Echo debug info text to file

+CDfile Both Debug_Consol e=On, Debug_Fi | e=file

- Gfile Both Debug_Consol e=Cf f, Debug_ Fi | e=file
Fatal _File=true Echo fatal text to FATAL. OUT

Fatal _Fil e=fal se Turn off file output of fatal

Fatal _Fi | e=file Echo fatal info text to file

+Gfile Both Fat al _Consol e=On, Fat al _Fi | e=file

- GHfile Both Fat al _Consol e=Cf f, Fatal _Fi |l e=file
Render _Fi | e=true Echo render info text to RENDER. OUT

Render _Fi | e=f al se Turn off file output of render info

Render _Fi | e=file Echo render info text to file

+CGRfile Both Render _Consol e=On, Render _Fi | e=file
- GRfile Both Render _Consol e=OFf, Render _Fi | e=file

Statistic_File=true Echo statistic text to STATS. OUT
Statistic_File=fal se | Turnoff file output of statistics

Statistic_File=file Echo statistic text to file

+GSfile Both St ati stic_Consol e=On, Statistic_Fil e=file

- GSfile Both St ati sti c_Consol e=OfF f,
Statistic_File=file

Varning_Fil e=true Echo warning info text to WARNI NG. QUT

Warni ng_Fi |l e=fal se Turn off file output of warning info

War ni ng_Fi | e=file Echo warning info text to file

+CGWile Both War ni ng_Consol e=On, War ni ng_Fi | e=file

- Gifile Both Var ni ng_Consol e=Of f, War ni ng_Fi | e=file

All _File=true Echo all debug, fatal, render, statistic, and warning text to
ALLTEXT. QUT

Al _File=fal se Turn off file output of all debug, fatal, render, statistic, and
warning text.

Al _Fi | e=file Echo all debug, fatal, render, statistic, and warning text to file

+GAfile Both Al | _Consol e=On, Al |l _Fil e=file

May 1999 POV-Ray 3.1g User Documentation Page 135

| - Gavile | Both Al | _Consol e=OFf, Al _Fil e=file |

You may direct a copy of the text streams to a text file for the debug, fatal, render, statistic, or warning text streams.
For example the St at i sti c_Fi | e=s option or the +GSs switch. If the string sist r ue or any of the other valid
t r ue strings then that stream is redirected to a file with a default name. Valid t r ue values are t r ue, yes, on or
1. Ifthe value is f al se the direction to a text file is turned off. Valid f al se values are f al se, no, of f orO.
Any other string specified turns on file output and the string is interpreted as the output file name.

Similarly you may specify such a true, false or file name string after a switch such as +GSfile. You may also direct
all five streams to the same file using the Al | _Fi | e option or +GA switch. You may not specify the same file for
two or more streams because POV-Ray will fail when it tries to open or close the same file twice.

Note that these options take effect immediately when specified. Obviously any error or warning messages that might
occur before the option is read will not be affected.

3.2.5.4 Help Screen Switches

+Hor +? Show help screen 0 if this is the only switch
+HO to +H8 Show help screen 0 to 8 if this is the only switch
+?70to +78 Same as +HO to +H8

Note that there are no INI style equivalents to these options.

Graphical interface versions of POV-Ray such as Mac or Windows have extensive online help. Other versions of
POV-Ray have only a few quick-reference help screens. The +7? switch, optionally followed by a single digit from 0
to 8, will display these help screens to the banner text stream. After displaying the help screens, POV-Ray
terminates. Because some operating systems do not permit a question mark as a command line switch you may also
use the +H switch. Note however that this switch is also used to specify the height of the image in pixels. Therefore
the +H switch is only interpreted as a help switch if it is the only switch on the command line and if the value after
the switch is less than or equal to 8.

3.2.6 Tracing Options

There is more than one way to trace a ray. Sometimes there is a trade-off between quality and speed. Sometimes
options designed to make tracing faster can slow things down. This section covers options that tell POV-Ray how to
trace rays with the appropriate speed and quality settings.

3.2.6.1 Quality Settings
Quality=n Set quality value to n (0 <=n <=11)
+ Same as Qual i ty=n

The Qual i t y=n option or +Qn switch allows you to specify the image rendering quality. You may choose to lower
the quality for test rendering and raise it for final renders. The quality adjustments are made by eliminating some of
the calculations that are normally performed. For example settings below 4 do not render shadows. Settings below 8
do not use reflection or refraction. The duplicate values allow for future expansion. The values correspond to the
following quality levels:

Just show quick colors. Use full ambient lighting only.
Quick colors are used only at 5 or below.
Show specified diffuse and ambient light.

Render shadows, but no extended lights.
Render shadows, including extended lights.
Compute texture patterns.

~N OO B~W NPk O

May 1999 POV-Ray 3.1g User Documentation Page 136

8 Compute reflected, refracted, and transmitted rays.
9 Compute media.

10 Compute radiosity but no media

11 Compute radiosity and media

The default is 9 if not specified.

3.2.6.2 Radiosity Setting

Radi osi t y=bool

Turns radiosity on/off

+R

Turns radiosity on

- R

Turns radiosity on

Radiosity is an additional calculation which computes diffuse inter-reflection. It is an extremely slow calculation
that is somewhat experimental. By default, radiosity is off. The parameters which control how radiosity calculations
are performed are specified in the r adi osi t y section of the gl obal _set ti ngs statement. See section
"Radiosity" for further details.

3.2.6.3 Automatic Bounding Control

Boundi ng=bool Turn bounding on/off

+MB Turn bounding on; Set threshold to 25 or previous
amount

- MB Turn bounding off

Boundi ng_Thr eshol d=n Set bound threshold to n

+MBn Turn bounding on; bound threshold to n

- MBn Turn bounding off; for future threshold to n

Li ght _Buf f er =bool Turn light buffer on/off

+UL Turn light buffer on

- UL Turn light buffer off

Vi st a_Buf f er =bool Turn vista buffer on/off

+UV Turn vista buffer on

- W Turn vista buffer off

POV-Ray uses a variety of spatial sub-division systems to speed up ray-object intersection tests. The primary system
uses a hierarchy of nested bounding boxes. This system compartmentalizes all finite objects in a scene into invisible
rectangular boxes that are arranged in a tree-like hierarchy. Before testing the objects within the bounding boxes the
tree is descended and only those objects are tested whose bounds are hit by a ray. This can greatly improve
rendering speed. However for scenes with only a few objects the overhead of using a bounding system is not worth
the effort. The Boundi ng=of f option or - MB switch allows you to force bounding off. The default value is on.

The Boundi ng_Thr eshol d=n or +MBn switch allows you to set the minimum number of objects necessary
before bounding is used. The default is +MB25 which means that if your scene has fewer than 25 objects POV-Ray
will automatically turn bounding off because the overhead isn't worth it. Generally it's a good idea to use a much
lower threshold like +MB5.

Additionally POV-Ray uses systems known as vista buffers and light buffers to further speed things up. These
systems only work when bounding is on and when there are a sufficient number of objects to meet the bounding
threshold. The vista buffer is created by projecting the bounding box hierarchy onto the screen and determining the
rectangular areas that are covered by each of the elements in the hierarchy. Only those objects whose rectangles
enclose a given pixel are tested by the primary viewing ray. The vista buffer can only be used with perspective and
orthographic cameras because they rely on a fixed viewpoint and a reasonable projection (i. e. straight lines have to
stay straight lines after the projection).

May 1999 POV-Ray 3.1g User Documentation Page 137

The light buffer is created by enclosing each light source in an imaginary box and projecting the bounding box
hierarchy onto each of its six sides. Since this relies on a fixed light source, light buffers will not be used for area
lights.

Reflected and transmitted rays do not take advantage of the light and vista buffer.

The default settings are Vi st a_Buf f er =on or +UV and Li ght _Buf f er =on or +UL. The option to turn these
features off is available to demonstrate their usefulness and as protection against unforeseen bugs which might exist
in any of these bounding systems.

In general, any finite object and many types of CSG of finite objects will properly respond to this bounding system.
In addition blobs and meshes use an additional internal bounding system. These systems are not affected by the
above switch. They can be switched off using the appropriate syntax in the scene file (see "Blob" and "Mesh" for
details). Text objects are split into individual letters that are bounded using the bounding box hierarchy. Some CSG
combinations of finite and infinite objects are also automatically bound. The end result is that you will rarely need to
add manual bounding objects as was necessary in earlier versions of POV-Ray unless you use many infinite objects.

3.2.6.4 Removing User Bounding

Remove_Bounds=bool Turn unnecessary bounds removal on/off
+UR Turn unnecessary bounds removal on

- UR Turn unnecessary bounds removal off
Split_Uni ons=bool Turn split bounded unions on/off

+SU Turn split bounded unions on

-SuU Turn split bounded unions off

Early versions of POV-Ray had no system of automatic bounding or spatial sub-division to speed up ray-object
intersection tests. Users had to manually create bounding boxes to speed up the rendering. Since version 3.0, POV-
Ray has had more sophisticated automatic bounding than any previous version. In many cases the manual bounding
on older scenes is slower than the new automatic systems. Therefore POV-Ray removes manual bounding when it
knows it will help. In rare instances you may want to keep manual bounding. Some older scenes incorrectly used
bounding when they should have used clipping. If POV-Ray removes the bounds in these scenes the image will not
look right. To turn off the automatic removal of manual bounds you should specify Remove_Bounds=of f or use
- UR The default is Remove_Bounds=on.

One area where the jury is still out is the splitting of manually bounded unions. Unbounded unions are always split
into their component parts so that automatic bounding works better. Most users do not bound unions because they
know that doing so is usually slower. If you do manually bound a union we presume you really want it bound. For
safety sake we do not presume to remove such bounds. If you want to remove manual bounds from unions you
should specify Spl i t _Uni ons=on or use +SU. The default is Spl i t _Uni ons=of f .

3.2.6.5 Anti-Aliasing Options

Anti al i as=bool Turns anti-aliasing on/off

+A Turns aa on with threshold 0.3 or previous amount
-A Turns anti-aliasing off

Sanpl i ng_Met hod=n Sets aa-sampling method (only 1 or 2 are valid)
+AMh Same as Sanpl i ng_Met hod=n

Anti al i as_Threshol d=n.n Sets anti-aliasing threshold

+An.n Sets aa on with aa-threshold at n.n

- An.n Sets aa off (aa-threshold n.n in future)

Ji tter=bool Sets aa-jitter on/off

+J Sets aa-jitter on with 1.0 or previous amount

-J Sets aa-jitter off

Ji tter_Anount =n.n Sets aa-jitter amount to n.n. If n.n <= 0 aa-jitter is set off

May 1999 POV-Ray 3.1g User Documentation Page 138

+Jn.n Sets aa-jitter on; jitter amount to n.n. If n.n <= 0 aa-jitter is set off
-Jn.n Sets aa-jitter off (jitter amount n.n in future)

Anti al i as_Dept h=n Sets aa-depth (1 <=n<=9)

+Rn Same as Anti al i as_Dept h=n

The ray-tracing process is in effect a discrete, digital sampling of the image with typically one sample per pixel.
Such sampling can introduce a variety of errors. This includes a jagged, stair-step appearance in sloping or curved
lines, a broken look for thin lines, moiré patterns of interference and lost detail or missing objects, which are so
small they reside between adjacent pixels. The effect that is responsible for those errors is called aliasing.

Anti-aliasing is any technique used to help eliminate such errors or to reduce the negative impact they have on the
image. In general, anti-aliasing makes the ray-traced image look smoother. The Ant i al i as=on option or +A
switch turns on POV-Ray's anti-aliasing system.

When anti-aliasing is turned on, POV-Ray attempts to reduce the errors by shooting more than one viewing ray into
each pixel and averaging the results to determine the pixel's apparent color. This technique is called super-sampling
and can improve the appearance of the final image but it drastically increases the time required to render a scene
since many more calculations have to be done.

POV-Ray gives you the option to use one of two alternate super-sampling methods. The Sanpl i ng_Met hod=n
option or +AVh switch selects either type 1 or type 2. Selecting one of those methods does not turn anti-aliasing on.
This has to be done by using the +A command line switch or Ant i al i as=on option.

Type 1 is an adaptive, non-recursive super-sampling method. It is adaptive because not every pixel is super-
sampled. Type 2 is an adaptive and recursive super-sampling method. It is recursive because the pixel is sub-
divided and sub-sub-divided recursively. The adaptive nature of type 2 is the variable depth of recursion.

In the default, non-recursive method (+AML), POV-Ray initially traces one ray per pixel. If the color of a pixel
differs from its neighbors (to the left or above) by more than a threshold value then the pixel is super-sampled by
shooting a given, fixed number of additional rays. The default threshold is 0.3 but it may be changed using the
Ant i al i as_Thr eshol d=n.n option. When the switches are used, the threshold may optionally follow the +A.
For example +A0. 1 turns anti-aliasing on and sets the threshold to 0.1.

The threshold comparison is computed as follows. If r1, g1, b1 and r2, g2, b2 are the rgb components of two pixels
then the difference between pixels is computed by

diff = abs(rl-r2) + abs(gl-g2) + abs(bl-b2)

If this difference is greater than the threshold then both pixels are super-sampled. The rgb values are in the range
from 0.0 to 1.0 thus the most two pixels can differ is 3.0. If the anti-aliasing threshold is 0.0 then every pixel is
super-sampled. If the threshold is 3.0 then no anti-aliasing is done. Lower threshold means more anti-aliasing and
less speed. Use anti-aliasing for your final version of a picture, not the rough draft. The lower the contrast, the lower
the threshold should be. Higher contrast pictures can get away with higher tolerance values. Good values seem to be
around 0.2 to 0.4.

When using the non-recursive method, the default number of super-samples is nine per pixel, located on a 3*3 grid.
The Ant i al i as_Dept h=n option or +Rn switch controls the number of rows and columns of samples taken for a
super-sampled pixel. For example +R4 would give 4*4=16 samples per pixel.

The second, adaptive, recursive super-sampling method starts by tracing four rays at the corners of each pixel. If the
resulting colors differ more than the threshold amount additional samples will be taken. This is done recursively, i.e.
the pixel is divided into four sub-pixels that are separately traced and tested for further subdivision. The advantage
of this method is the reduced number of rays that have to be traced. Samples that are common among adjacent pixels
and sub-pixels are stored and reused to avoid re-tracing of rays. The recursive character of this method makes the
super-sampling concentrate on those parts of the pixel that are more likely to need super-sampling (see figure
below).

May 1999 POV-Ray 3.1g User Documentation Page 139

® new samples
O reused samples

+ + .
° - Lone pixel

+ pixel corners
iy

* * 4 e 4
initial samples level 1
o e ono&%
* * ¢ 0000
e o o oY JoI"Jo)
000
©C @ O @ O O Ce0e0 O
00000
e o 0 o o O Ce0e0 O
00
4 & 0 @ 4 & 000 O G
level 2 level 3

Example of how the recursive super-sampling works.

The maximum number of subdivisions is specified by the Ant i al i as_Dept h=n option or +Rn switch. This is
different from the adaptive, non-recursive method were the total number of super-samples is specified. A maximum
number of n subdivisions results in a maximum number of samples per pixel that is given by the following table.

+Rn Number of samples per Maximum number of samples

super-sampled pixel for the per super-sampled pixel for
non-recursive method +AML the recursive method +AM2

1 1 9

2 4 25

3 9 81

4 16 289

5 25 1089

6 36 4225

7 49 16641

8 64 66049

9 81 263169

You should note that the maximum number of samples in the recursive case is hardly ever reached for a given pixel.
If the recursive method is used with no anti-aliasing each pixel will be the average of the rays traced at its corners. In
most cases a recursion level of three is sufficient.

Another way to reduce aliasing artifacts is to introduce noise into the sampling process. This is called jittering and
works because the human visual system is much more forgiving to noise than it is to regular patterns. The location
of the super-samples is jittered or wiggled a tiny amount when anti-aliasing is used. Jittering is used by default but it
may be turned off with the Ji t t er =of f option or - J switch. The amount of jittering can be set with the

Ji tt er _Armount =n.n option. When using switches the jitter scale may be specified after the +Jn.n switch. For
example +J0. 5 uses half the normal jitter. The default amount of 1.0 is the maximum jitter which will insure that
all super-samples remain inside the original pixel. Note that the jittering noise is random and non-repeatable so you

May 1999 POV-Ray 3.1g User Documentation Page 140

should avoid using jitter in animation sequences as the anti-aliased pixels will vary and flicker annoyingly from
frame to frame.

If anti-aliasing is not used one sample per pixel is taken regardless of the super-sampling method specified.

May 1999 POV-Ray 3.1g User Documentation Page 141

4 Scene Description Language

The reference section describes the POV-Ray scene description language. It is supposed to be used as a reference
for looking up things. It does not contain detailed explanations on how scenes are written or how POV-Ray is used.
It just explains all features, their syntax, applications, limits, drawbacks, etc.

The scene description language allows you to describe the world in a readable and convenient way. Files are created
in plain ASCII text using an editor of your choice. The input file name is specified using the

I nput _Fi | e_Nane=file option or +I file switch. By default the files have the extension . pov. POV-Ray reads
the file, processes it by creating an internal model of the scene and then renders the scene.

The overall syntax of a scene is shown below. See "Notation and Basic Assumptions” for more information on
syntax notation.

SCENE:
SCENE_ITEM...

SCENE_ITEM:
LANGUAGE_DIRECTIVES |
canera { CAMERA_ITEMS... } |
OBJECTS |
ATMOSPHERIC_EFFECTS |
gl obal _settings { GLOBAL_ITEMS }

In plain English, this means that a scene contains one or more scene items and that a scene item may be any of the
five items listed below it. The items may appear in any order. None is a required item. In addition to the syntax
depicted above, a LANGUAGE_DIRECTIVE may also appear anywhere embedded in other statements between any
two tokens. There are some restrictions on nesting directives also.

For details on those five items see section "Language Directives", section "Objects”, section "Camera", section
"Atmospheric Effects" and section "Global Settings" for details.
4.1 Language Basics

The POV-Ray language consists of identifiers, reserved keywords, floating point expressions, strings, special
symbols and comments. The text of a POV-Ray scene file is free format. You may put statements on separate lines
or on the same line as you desire. You may add blank lines, spaces or indentations as long as you do not split any
keywords or identifiers.

4.1.1 Identifiers and Keywords

POV-Ray allows you to define identifiers for later use in the scene file. An identifier may be 1 to 40 characters long.
It may consist of upper or lower case letters, the digits O through 9 or an underscore character ("_"). The first
character must be an alphabetic character. The declaration of identifiers is covered later.

POV-Ray has a number of reserved keywords which are listed below.

abs dimension_size merge sky_sphere
absorption direction mesh slice

acos disc metallic slope_map
acosh distance min smooth
adaptive distance_maximum | minimum_reuse smooth_triangle
adc_bailout div mod sor

agate eccentricity mortar specular
agate_turb else nearest_count sphere

all emission no spherical

May 1999 POV-Ray 3.1g User Documentation Page 142

May 1999

alpha
ambient
ambient_light
angle
aperture
append
arc_angle
area_light
array

asc

asin

asinh

assumed_gamma

atan

atan2

atanh
average
background
bezier_spline
bicubic_patch
black_hole
blob

blue
blur_samples
bounded_by
box

boxed

bozo

break

brick
brick_size
brightness
brilliance
bumps
bump_map
bump_size
camera

case
caustics

ceil

checker

chr
clipped_by
clock
clock_delta
color
color_map
colour
colour_map
component
composite
concat

cone
confidence
conic_sweep
control0

end

error
error_bound
exp
extinction
fade_distance
fade_power
falloff
falloff_angle
false

fclose
file_exists
filter

finish
fisheye
flatness

flip

floor
focal_point
fog

fog_alt
fog_offset
fog_type
fopen
frequency
gif
global_settings
gradient
granite
gray_threshold
green
height_field
hexagon
hf_gray 16
hierarchy
hollow
hypercomplex
if

ifdef

iff

ifndef
image_map
include

int

interior
interpolate
intersection
intervals
inverse

ior

irid
irid_wavelength
jitter
julia_fractal
lambda

lathe

normal
normal_map
no_shadow

number_of waves

object
octaves

off

offset
omega
omnimax
on

once
onion

open
orthographic
panoramic
perspective
pgm

phase
phong
phong_size
pi

pigment
pigment_map
planar
plane

png
point_at
poly
polygon
poly_wave
pot

pow

ppm -
precision
prism

pwr

quadratic_spline

quadric
quartic
quaternion
quick_color
quick_colour
quilted

radial
radians
radiosity
radius
rainbow
ramp_wave
rand

range

ratio

read
reciprocal
recursion_limit

spirall
spiral2
spotlight
spotted

sqr

sgrt
statistics
str

strcmp
strength
strlen
striwr
strupr
sturm
substr
superellipsoid
switch

sys

t

tan

tanh

text
texture
texture_map
tga
thickness
threshold
tightness
tile2

tiles

torus

track
transform
translate
transmit
triangle
triangle_wave
true

ttf
turbulence
turb_depth
type

u
ultra_wide_angle
undef
union

up
use_color
use_colour
use_index
u_steps

%

val
variance
vaxis_rotate
VCross

POV-Ray 3.1g User Documentation

Page 143

controll leopard red vdot

oS light_source reflection version
cosh linear_spline reflection_exponent | vlength
count linear_sweep refraction vhormalize
crackle local render vrotate
crand location repeat V_steps
cube log rgbh warning
cubic looks_like rgbf warp
cubic_spline look_at rgbft water_level
cubic_wave low_error_factor rgbt waves
cylinder macro right while
cylindrical mandel ripples width
debug map_type rotate wood
declare marble roughness wrinkles
default material samples write
defined material_map scale X
degrees matrix scallop_wave y
density max scattering yes
density_file max_intersections seed z
density_map max_iteration shadowless

dents max_trace_level sin

difference media sine_wave

diffuse media_attenuation sinh

dimensions media_interaction sky

All reserved words are fully lower case. Therefore it is recommended that your identifiers contain at least one upper
case character so it is sure to avoid conflict with reserved words.

4,1.2 Comments

Comments are text in the scene file included to make the scene file easier to read or understand. They are ignored by
the ray-tracer and are there for your information. There are two types of comments in POV-Ray.

Two slashes are used for single line comments. Anything on a line after a double slash (/ /) is ignored by the ray-
tracer. For example:

/1 This line is ignored
You can have scene file information on the line in front of the comment as in:
object { FooBar } // this is an object

The other type of comment is used for multiple lines. It starts with "'/ * " and ends with "*/ ". Everything in-between
is ignored. For example:

/* These I|ines
are ignored
by the
ray-tracer */

This can be useful if you want to temporarily remove elements from a scene file./ * ... */ comments can comment
out lines containing other / / comments and thus can be used to temporarily or permanently comment out parts of a
scene. / * ...*/ comments can be nested, the following is legal:

/* This is a conment
/1 This too

/* This also */

*/

Use comments liberally and generously. Well used, they really improve the readability of scene files.

May 1999 POV-Ray 3.1g User Documentation Page 144

4.1.3 Float Expressions

Many parts of the POV-Ray language require you to specify one or more floating point numbers. A floating point
number is a number with a decimal point. Floats may be specified using literals, identifiers or functions which return
float values. You may also create very complex float expressions from combinations of any of these using various
familiar operators.

Where POV-Ray needs an integer value it allows you to specify a float value and it truncates it to an integer. When
POV-Ray needs a logical or boolean value it interprets any non-zero float as true and zero as false. Because float
comparisons are subject to rounding errors POV-Ray accepts values extremely close to zero as being false when
doing boolean functions. Typically values whose absolute values are less than a preset value epsilon are considered
false for logical expressions. The value of epsilon is system dependent but is generally about 1.0e-10. Two floats a
and b are considered to be equal if abs(a-b) < epsilon.

The full syntax for float expressions is given below. Detailed explanations are given in the following sub-sections.

FLOAT:
NUMERIC_TERM [SIGN NUMERIC_TERM]

SIGN:
+ | -
NUMERIC_TERM:
NUMERIC_FACTOR [MULT NUMERIC_FACTOR]

MULT:
* I /
NUMERIC_FACTOR:
FLOAT_LITERAL |
FLOAT_IDENTIFIER |
SIGN NUMERIC_FACTOR |
FLOAT_FUNCTION |
FLOAT BUILT-IN_IDENT |
(FULL_EXPRESSION) |
| NUMERIC_FACTOR |
VECTOR DECIMAL_POINT DOT_ITEM

FLOAT LITERAL:
[DIGIT..] [DECIMAL_POINT] DIGIT... [EXP [SIGN] DIGIT..]

DIGIT:
0|12 |3|4|5]|6|7]8]9

DECIMAL_POINT:

EXP:
e | E

DOT_ITEM:
X |y |lz]|t]J]u]v]red]| blue | green | filter | transmt

FLOAT_FUNCTION:
abs(FLOAT) | acos(FLOAT) | val (STRING) | asc(STRING) |
asi n(FLOAT) | atan2(FLOAT, FLOAT) | ceil (FLOAT) | cos(FLOAT) |
defi ned(IDENTIFIER) | degrees(FLOAT) | div(FLOAT, FLOAT) | exp(FLOAT) |
file_exists(STRING) | floor(FLOAT) | int(FLOAT) | |og(FLOAT) |
max(FLOAT, FLOAT) | mi n(FLOAT, FLOAT) | nmod(FLOAT, FLOAT) |
pow(FLOAT, FLOAT) | radi ans(FLOAT) | sin(FLOAT) | sqrt(FLOAT) |

May 1999 POV-Ray 3.1g User Documentation Page 145

strcnp(STRING, STRING) | strlen(STRING) | tan(FLOAT) |
vdot (VECTOR, VECTOR) | vl ength(VECTOR) | seed(FLOAT) | rand(FLOAT) |
di mensi ons(ARRAY_IDENTIFIER) | di nensi on_si ze(ARRAY_IDENTIFIER, FLOAT)

FLOAT_BUILT-IN_IDENT:
clock | pi | version | true | yes | on | false | no |
off | clock _delta

FULL_EXPRESSION:
LOGICAL_EXPRESSION [? FULL_EXPRESSION : FULL_EXPRESSION]

LOGICAL_EXPRESSION:
REL_TERM [LOGICAL_OPERATOR REL_TERM]

LOGICAL_OPERATOR:
& | | (note this means an ampersand or a vertical bar is a logical operator)

REL_TERM:
FLOAT [REL_OPERATOR FLOAT]

REL_OPERATOR:
<l l=1>1>]!=

INT:
FLOAT (note any syntax which requires a integer INT will accept a FLOAT and it will be truncated
to an integer internally by POV-Ray).

Note: FLOAT_IDENTIFIERS are identifiers previously declared to have float values. The DOT_ITEM syntax is
actually a vector or color operator but it returns a float value. See "Vector Operators” or "Color Operators™ for
details. An ARRAY_IDENTIFIER is just the identifier name of a previously declared array, it does not include the
[1 braces nor the index. The syntax for STRING is in the section "Strings".

4.1.3.1 Float Literals

Float literals are represented by an optional sign ("+" or "-") digits, an optional decimal point and more digits. If the
number is an integer you may omit the decimal point and trailing zero. If it is all fractional you may omit the leading
zero. POV-Ray supports scientific notation for very large or very small numbers. The following are all valid float
literals:

-2.0 -4 34 3.4e6 2e-5 .3 0.6

4.1.3.2 Float Identifiers

Float identifiers may be declared to make scene files more readable and to parameterize scenes so that changing a
single declaration changes many values. An identifier is declared as follows.

FLOAT_DECLARATION:
#decl ar e IDENTIFIER = EXPRESSION; |
#l ocal IDENTIFIER = EXPRESSION;

Where IDENTIFIER is the name of the identifier up to 40 characters long and EXPRESSION is any valid expression
which evaluates to a float value. Note that there should be a semi-colon after the expression in a float declaration.
This semi-colon is new with POV-Ray version 3.1. If omitted, it generates a warning and some macros may not
work properly. See "#declare vs. #local" for information on identifier scope. Here are some examples.

#decl are Count = O;

#decl are Rows = 5. 3;

#decl are Cols = 6. 15;

#decl are Nunber = Rows*Col s;
#decl are Count = Count +1;

May 1999 POV-Ray 3.1g User Documentation Page 146

As the last example shows, you can re-declare a float identifier and may use previously declared values in that re-
declaration. There are several built-in identifiers which POV-Ray declares for you. See "Built-in Float Identifiers"
for details.

4.1.3.3 Float Operators

Arithmetic expressions: Basic math expressions can be created from float literals, identifiers or functions using the
following operators in this order of precedence...

() expressions in parentheses first

+A -A ' A | unary minus, unary plus and logical "not"
A*B A/ B multiplication and division

A+B A-B addition and subtraction

Relational, logical and conditional expressions may also be created. However there is a restriction that these types of
expressions must be enclosed in parentheses first. This restriction, which is not imposed by most computer
languages, is necessary because POV-Ray allows mixing of float and vector expressions. Without the parentheses
there is an ambiguity problem. Parentheses are not required for the unary logical not operator "!" as shown above.
The operators and their precedence are shown here.

Relational expressions: The operands are arithmetic expressions and the result is always boolean with 1 for true
and O for false. All relational operators have the same precedence.

(A < B) Ais less than B

(A <= B) Ais less than or equal to B

(A = B) A is equal to B (actually abs(A-B)<EPSILON)

(A !'= B) A is not equal to B (actually abs(A-B)>=EPSILON)
(A >= B) A is greater than or equal to B

(A > B) A is greater than B

Logical expressions: The operands are converted to boolean values of 0 for false and 1 for true. The result is always
boolean. All logical operators have the same precedence. Note that these are not bit-wise operations, they are
logical.

(A & B) true only if both A and B are true, false otherwise
(A| B) true if either A or B or both are true

Conditional expressions: The operand C is boolean while operands A and B are any expressions. The result is of
the same type as A and B.

[(C? A: B [ifCthenAclseB |
Assuming the various identifiers have been declared, the following are examples of valid expressions...
1+2+3 2*5 1/3 Row* 3 Col *5
(Offset-5)/2 Thi s/ That +& her * Thi ng

((Thi s<That) & (O her>=Thi ng) ?Foo: Bar)
Expressions are evaluated left to right with innermost parentheses evaluated first, then unary +, - or I, then multiply

or divide, then add or subtract, then relational, then logical, then conditional.
4.1.3.4 Built-in Float Identifiers

There are several built-in float identifiers. You can use them to specify values or to create expressions but you
cannot re-declare them to change their values. They are:

FLOAT_BUILT-IN_IDENT:
clock | pi | version | true | yes | on | false | no |
off | clock _delta

May 1999 POV-Ray 3.1g User Documentation Page 147

Most built-in identifiers never change value. They are defined as though the following lines were at the start of
every scene.

415926535897932384626;

#declare pi = 3.1
#declare true = 1
#declare yes = 1
#decl are on = 1;
#decl are fal se = 0O;
#decl are no = O;
#decl are of f = 0;

The built-in float identifier pi is obviously useful in math expressions involving circles. The built-in float
identifiers on, of f , yes, no, t rue, and f al se are designed for use as boolean constants.

The built-in float identifier cl ock is used to control animations in POV-Ray. Unlike some animation packages, the
action in POV-Ray animated scenes does not depend upon the integer frame numbers. Rather you should design
your scenes based upon the float identifier cl ock. For non-animated scenes its default value is 0 but you can set it
to any float value using the INI file option G ock=n.n or the command-line switch +Kn.n to pass a single float
value your scene file.

Other INI options and switches may be used to animate scenes by automatically looping through the rendering of
frames using various values for cl ock. By default, the clock value is 0 for the initial frame and 1 for the final
frame. All other frames are interpolated between these values. For example if your object is supposed to rotate one
full turn over the course of the animation you could specify r ot at e 360* cl ock*y. Then as clock runs from 0
to 1, the object rotates about the y-axis from 0 to 360 degrees.

Although the value of ¢l ock will change from frame-to-frame, it will never change throughout the parsing of a
scene.

The built-in float identifier cl ock_del t a returns the amount of time between clock values in animations in POV-
Ray. While most animations only need the clock value itself, some animation calculations are easier if you know
how long since the last frame. Caution must be used when designing such scenes. If you render a scene with too few
frames, the results may be different than if you render with more frames in a given time period. On non-animated
scenes, cl ock_del t a defaults to 1.0. See section "Animation Options" for more details.

The built-in float identifier ver si on contains the current setting of the version compatibility option. Although this
value defaults to 3.1 which is the current POV-Ray version number, the initial value of ver si on may be set by the
INI file option Ver si on=n.n or by the +Mvn.n command-line switch. This tells POV-Ray to parse the scene file
using syntax from an earlier version of POV-Ray.

The INI option or switch only affects the initial setting. Unlike other built-in identifiers, you may change the value
of ver si on throughout a scene file. You do not use #dec! ar e to change it though. The #ver si on language
directive is used to change modes. Such changes may occur several times within scene files.

Together with the built-in ver si on identifier the #ver si on directive allows you to save and restore the previous
values of this compatibility setting. The new #l ocal identifier option is especially useful here. For example
suppose myst uf f . i nc is in version 1 format. At the top of the file you could put:

#l ocal Tenp_Vers = version; [/ Save previous val ue

#version 1.0; /1 Change to 1.0 node
/1 Version 1.0 stuff goes here...
#version Tenp_Vers; /1 Restore previous version

Note that there should be a semi-colon after the float expression in a #ver si on directive. This semi-colon is new
with POV-Ray version 3.1. If omitted, it generates a warning and some macros may not work properly.

May 1999 POV-Ray 3.1g User Documentation Page 148

4.1.3.5 Boolean Keywords

The built-in float identifiers on, of f , yes, no, t r ue, and f al se are most often used as boolean values with
object modifiers or parameters such as st ur m hol | ow, hi er ar chy, snoot h, medi a_at t enuat i on, and
nmedi a_i nt eract i on. Whenever you see syntax of the form keywor d [Bool], if you simply specify the
keyword without the optional boolean then it assumes keywor d on. You need not use the boolean but for
readability it is a good idea. You must use one of the false booleans or an expression which evaluates to zero to turn
it off. Note some of these keywords default on if no keyword is specified. For example:

obj ect{MWBI ob} //sturmdefaults off but hierarchy defaults on

obj ect { WyBl ob sturnt //turn sturm on

obj ect { W/BI ob st urm on} //turn sturmon

object{MWBl ob sturmoff} //turn sturmoff

obj ect{ WBI ob hierarchy} //does nothing, hierarchy was al ready on
obj ect{ MBI ob hierarchy off} //turn hierarchy off

4.1.3.6 Float Functions

POV-Ray defines a variety of built-in functions for manipulating floats, vectors and strings. Function calls consist of
a keyword which specifies the name of the function followed by a parameter list enclosed in parentheses. Parameters
are separated by commas. For example:

keywor d(par aml, par anR)

The following are the functions which return float values. They take one or more float, integer, vector, or string
parameters. Assume that A and B are any valid expression that evaluates to a float; | is a float which is truncated to
integer internally, S, S1, S2 etc. are strings, and V, V1, V2 etc. are any vector expressions.

abs(A) Absolute value of A. If Ais negative, returns - A otherwise returns A.
acos(A) Arc-cosine of A. Returns the angle, measured in radians, whose cosine is A.
asc(S) Returns an integer value in the range 0 to 255 that is the ASCII value of the first character of the

string S. For example asc(" ABC") is 65 because that is the value of the character "A".
asi n(A) Arc-sine of A. Returns the angle, measured in radians, whose sine is A.

atan2(A, B) Arc-tangent of (A/ B) . Returns the angle, measured in radians, whose tangent is (A/ B) . Returns
appropriate value even if B is zero. Use at an2(A, 1) to compute usual atan(A) function.

ceil (A Ceiling of A. Returns the smallest integer greater than A. Rounds up to the next higher integer.
cos(A) Cosine of A. Returns the cosine of the angle A, where A is measured in radians.
defi ned(IDENTIFIER) Returns t r ue if the identifier is currently defined, f al se otherwise. This is

especially useful for detecting end-of-file after a #r ead directive because the file identifer is automatically
undefined when end-of-file is reached. See "The #read Directive" for details.

degrees(A) Convert radians to degrees. Returns the angle measured in degrees whose value in radians is A.
Formula is degrees=A/pi*180.0.

di mensi ons(ARRAY_IDENTIFIER) Returns the number of dimensions of a previously declared array
identifier. For example if you do #decl are MyArray=array[6] [10] thendi mensi ons(MyArr ay)
returns the value 2.

May 1999 POV-Ray 3.1g User Documentation Page 149

di mensi on_si ze(ARRAY_IDENTIFIER, FLOAT) Returns the size of a given dimension of a previously
declared array identifier. Dimensions are numbered left-to-right starting with 1. For example if you do #decl ar e
MyAr ray=array[6] [10] thendi nensi on_si ze(MyArray, 2) returns the value 10.

di v(A B) Integer division. The integer part of (A/ B) .

exp(A) Exponential of A. Returns the value of e raised to the power A where e is the base of the natural
logarithm, i.e. the non-repeating value approximately equal to 2.71828182846.

file_exists(S) Attempts to open the file specified by the string S. The current directory and all library
directories specified by the Li br ary_Pat h or +L options are also searched. See "Library Paths" for details.
Returns 1 if successful and O if unsuccessful.

fl oor (A) Floor of A. Returns the largest integer less than A. Rounds down to the next lower integer.
int(A) Integer part of A. Returns the truncated integer part of A. Rounds towards zero.

l og(A) Natural logarithm of A. Returns the natural logarithm base e of the value A.

max(A, B) Maximum of A and B. Returns A if A larger than B. Otherwise returns B.

m n(A, B) Minimum of Aand B. Returns A if A smaller than B. Otherwise returns B.

nod(A, B) Value of Amodulo B. Returns the remainder after the integer division of A/B. Formula is

mod=((A/B)-int(A/B))*B.
pow(A, B) Exponentiation. Returns the value of A raised to the power B.

radi ans(A) Convert degrees to radians. Returns the angle measured in radians whose value in degrees is A.
Formula is radians=A*pi/180.0.

rand(1) Returns the next pseudo-random number from the stream specified by the positive integer | . You
must call seed() to initialize a random stream before calling r and() . The numbers are uniformly distributed, and
have values between 0. 0 and 1. 0, inclusively. The numbers generated by separate streams are independent
random variables.

seed(A Initializes a new pseudo-random stream with the initial seed value A. The number corresponding
to this random stream is returned. Any number of pseudo-random streams may be used as shown in the example
below:

#decl are R1 seed(0);
#decl are R2 = seed(12345);
#sphere { <rand(R1), rand(Rl), rand(Rl)>, rand(R2) }

Multiple random generators are very useful in situations where you use r and(') to place a group of objects, and
then decide to use r and() in another location earlier in the file to set some colors or place another group of
objects. Without separate r and() streams, all of your objects would move when you added more calls to r and() .
This is very annoying.

sin(A) Sine of A. Returns the sine of the angle A, where A is measured in radians.

strcnp(S1, S2) Compare string S1 to S2. Returns a float value zero if the strings are equal, a positive
number if S1 comes after S2 in the ASCII collating sequence, else a negative number.

strlen(S) Length of S. Returns an integer value that is the number of characters in the string S.

sqrt (A) Square root of A. Returns the value whose square is A.

May 1999 POV-Ray 3.1g User Documentation Page 150

tan(A) Tangent of A. Returns the tangent of the angle A, where A is measured in radians.

val (S) Convert string S to float. Returns a float value that is represented by the text in string S. For
example val (" 123. 45") is 123.45 as a float.

vdot (V1, V2) Dot product of V1 and V2. Returns a float value that is the dot product (sometimes called scalar
product of V1 with V2. Formula is vdot=V1.x*V2.x + V1.y*V2.y + V1.z*V2.z. See the animated demo scene
VECT2. POV for an illustration.

vl engt h(V) Length of V. Returns a float value that is the length of vector V. Formula is
vlength=sqrt(vdot(A,A)). Can be used to compute the distance between two points. Di st =vl engt h(V2-V1).

See section "Vector Functions" and section "String Functions" for other functions which are somewhat float-related
but which return vectors and strings. In addition to the above built-in functions, you may also define your own
functions using the new #macr o directive. See the section "User Defined Macros™ for more details.

4.1.4 Vector Expressions

POV-Ray often requires you to specify a vector. A vector is a set of related float values. Vectors may be specified
using literals, identifiers or functions which return vector values. You may also create very complex vector
expressions from combinations of any of these using various familiar operators.

POV-Ray vectors may have from two to five components but the vast majority of vectors have three components.
Unless specified otherwise, you should assume that the word "vector" means a three component vector. POV-Ray
operates in a 3D X, y, z coordinate system and you will use three component vectors to specify x, y and z values. In
some places POV-Ray needs only two coordinates. These are often specified by a 2D vector called an UV vector.
Fractal objects use 4D vectors. Color expressions use 5D vectors but allow you to specify 3, 4 or 5 components and
use default values for the unspecified components. Unless otherwise noted, all 2, 4 or 5 component vectors work just
like 3D vectors but they have a different number of components.

The syntax for combining vector literals into vector expressions is almost identical to the rules for float expressions.
In the syntax for vector expressions below, some of the syntax items are defined in the section for float expressions.
See "Float Expressions™ for those definitions. Detailed explanations of vector-specific issues are given in the
following sub-sections.

VECTOR:
NUMERIC_TERM [SIGN NUMERIC_TERM]

NUMERIC_TERM:
NUMERIC_FACTOR [MULT NUMERIC_FACTOR]

NUMERIC_FACTOR:
VECTOR_LITERAL |
VECTOR_IDENTIFIER |
SIGN NUMERIC_FACTOR |
VECTOR_FUNCTION |
VECTOR_BUILT-IN_IDENT |
(FULL_EXPRESSION) |
I NUMERIC_FACTOR |
FLOAT

VECTOR_LITERAL:
< FLOAT, FLOAT, FLOAT>

VECTOR_FUNCTION:
vaxi s_rotate(VECTOR, VECTOR, FLOAT) |
vcross(VECTOR, VECTOR) |
vrot ate(VECTOR, VECTOR) |

May 1999 POV-Ray 3.1g User Documentation Page 151

vnormal i ze(VECTOR)

VECTOR_BUILT-IN_IDENT:
x lylz [t]ulyv

Note: VECTOR_IDENTIFIERS are identifiers previously declared to have vector values.

4.1.4.1 Vector Literals

Vectors literals consist of two to five float expressions that are bracketed by angle brackets < and >. The terms are
separated by commas. For example here is a typical three component vector:

< 1.0, 3.2, -5.4578 >

The commas between components are necessary to keep the program from thinking that the 2nd term is the single
float expression 3. 2- 5. 4578 and that there is no 3rd term. If you see an error message such as "Float expected
but ">' found instead" then you probably have missed a comma.

Sometimes POV-Ray requires you to specify floats and vectors side-by-side. The rules for vector expressions allow
for mixing of vectors with vectors or vectors with floats so commas are required separators whenever an ambiguity
might arise. For example <1, 2, 3>- 4 evaluates as a mixed float and vector expression where 4 is subtracted from
each component resulting in <- 3, - 2, - 1>. However the comma in <1, 2, 3>, - 4 means this is a vector followed
by a float.

Each component may be a full float expression. For example <Thi s+3, That/ 3, 5* &t her _Thi ng> is a valid
vector.

4.1.4.2 Vector ldentifiers

Vector identifiers may be declared to make scene files more readable and to parameterize scenes so that changing a
single declaration changes many values. An identifier is declared as follows.

VECTOR_DECLARATION:
#decl ar e IDENTIFIER = EXPRESSION; |
#l ocal IDENTIFIER = EXPRESSION;

Where IDENTIFIER is the name of the identifier up to 40 characters long and EXPRESSION is any valid expression
which evaluates to a vector value. Note that there should be a semi-colon after the expression in a vector declaration.
This semi-colon is new with POV-Ray version 3.1. If omitted, it generates a warning and some macros may not
work properly. See "#declare vs. #local" for information on identifier scope. Here are some examples....

#decl are Here = <1, 2, 3>;

#decl are There = <3, 4, 5>;

#decl are Junp = <Foo*2, Bar - 1, Bob/ 3>;
#decl are Route = There-Here;

#decl are Junp = Junp+<l, 2, 3>;

Note that you invoke a vector identifier by using its name without any angle brackets. As the last example shows,
you can re-declare a vector identifier and may use previously declared values in that re-declaration. There are
several built-in identifiers which POV-Ray declares for you. See section "Built-in Vector Identifiers" for details.

4.1.4.3 Vector Operators

Vector literals, identifiers and functions may also be combined in expressions the same as float values. Operations
are performed on a component-by-component basis. For example <1, 2, 3> + <4, 5, 6> evaluates the same as
<1+4, 2+5, 3+6> or <5, 7, 9>. Other operations are done on a similar component-by-component basis. For
example (<1, 2, 3> = <3, 2, 1>) evaluates to <0, 1, 0> because the middle components are equal but the
others are not. Admittedly this isn't very useful but its consistent with other vector operations.

May 1999 POV-Ray 3.1g User Documentation Page 152

Conditional expressions suchas (C ? A : B) require that Cis a float expression but Aand B may be vector
expressions. The result is that the entire conditional evaluates as a valid vector. For example if Foo and Bar are
floats then (Foo < Bar ? <1,2,3> : <5,6, 7>) evaluates as the vector <1, 2, 3> if Foo is less than Bar
and evaluates as <5, 6, 7> otherwise.

You may use the dot operator to extract a single float component from a vector. Suppose the identifier Spot was
previously defined as a vector. Then Spot . x is a float value that is the first component of this X, y, z vector.
Similarly Spot . y and Spot . z reference the 2nd and 3rd components. If Spot was a two component UV vector
you could use Spot . u and Spot . v to extract the first and second component. For a 4D vector use . X, . Y, . Z,
and . t to extract each float component. The dot operator is also used in color expressions which are covered later.

4.1.4.4 Operator Promotion

You may use a lone float expression to define a vector whose components are all the same. POV-Ray knows when it
needs a vector of a particular type and will promote a float into a vector if need be. For example the POV-Ray

scal e statement requires a three component vector. If you specify scal e 5 then POV-Ray interprets this as
scal e <5, 5, 5> which means you want to scale by 5 in every direction.

Versions of POV-Ray prior to 3.0 only allowed such use of a float as a vector in various limited places such as
scal e and t ur bul ence. However you may now use this trick anywhere. For example...

box{0,1} // Sane as box{<O0, 0, 0>, <1, 1, 1>}

sphere{0, 1} // Sane as sphere{<0, 0, 0>, 1}
When promoting a float into a vector of 2, 3, 4 or 5 components, all components are set to the float value, however
when promoting a vector of a lower number of components into a higher order vector, all remaining components are
set to zero. For example if POV-Ray expects a 4D vector and you specify 9 the result is <9, 9, 9, 9> but if you
specify <7, 6> the result is <7, 6, 0, 0>.

4.1.45 Built-in Vector ldentifiers

There are several built-in vector identifiers. You can use them to specify values or to create expressions but you
cannot re-declare them to change their values. They are:

VECTOR_BUILT-IN_IDENT:
x lylzlt]ulyv

All built-in vector identifiers never change value. They are defined as though the following lines were at the start of
every scene.

#declare x = <1, 0, 0>;
#declare y = <0, 1, 0>;
#declare z = <0, 0, 1>;
#declare t = <0, 0, 0, 1>;
#declare u = <1, 0>;
#declare v = <0, 1>;

The built-in vector identifiers x, y, and z provide much greater readability for your scene files when used in vector
expressions. For example....

plane { y, 1} /1 The normal vector is obviously "y".
plane { <0,1,0>, 1} // This is harder to read.
transl ate 5*x /1 Move 5 units in the "x" direction.

translate <5,0,0> // This is | ess obvious.

An expression like 5* x evaluates to 5* <1, 0, 0> or <5, 0, 0>.

May 1999 POV-Ray 3.1g User Documentation Page 153

Similarly u and v may be used in 2D vectors. When using 4D vectors you should use x, y, z, and t and POV-Ray
will promote x, y, and z to 4D when used where 4D is required.

4.1.4.6 Vector Functions

POV-Ray defines a variety of built-in functions for manipulating floats, vectors and strings. Function calls consist of
a keyword which specifies the name of the function followed by a parameter list enclosed in parentheses. Parameters
are separated by commas. For example:

keywor d(par aml, par an®)

The following are the functions which return vector values. They take one or more float, integer, vector, or string
parameters. Assume that A and B are any valid expression that evaluates to a vector; and F is any float expression.

vaxis_rotate(A B, F) Rotate A about B by F. Given the x,y,z coordinates of a point in space
designated by the vector A, rotate that point about an arbitrary axis defined by the vector B. Rotate it through an
angle specified in degrees by the float value F. The result is a vector containing the new X,y,z coordinates of the
point.

vcross(A, B) Cross product of A and B. Returns a vector that is the vector cross product of the two vectors. The
resulting vector is perpendicular to the two original vectors and its length is proportional to the angle between them.
See the animated demo scene VECT2. POV for an illustration.

vnormal i ze(A) Normalize vector A. Returns a unit length vector that is the same direction as A. Formula
is vnormalize=A/vlength(A).

vrot at e(A B) Rotate A about origin by B. Given the x,y,z coordinates of a point in space designated by
the vector A, rotate that point about the origin by an amount specified by the vector B. Rotate it about the x-axis by
an angle specified in degrees by the float value B. x. Similarly B. y and B. z specify the amount to rotate in degrees
about the y-axis and z-axis. The result is a vector containing the new x,y,z coordinates of the point.

See section "Float Functions" for other functions which are somewhat vector-related but which return floats. In
addition to the above built-in functions, you may also define your own functions using the new #macr o directive.
See the section "User Defined Macros" for more details.

4.1.5 Specifying Colors

POV-Ray often requires you to specify a color. Colors consist of five values or color components. The first three are
called r ed, gr een, and bl ue. They specify the intensity of the primary colors red, green and blue using an
additive color system like the one used by the red, green and blue color phosphors on a color monitor.

The 4th component, called f i | t er, specifies the amount of filtered transparency of a substance. Some real-world
examples of filtered transparency are stained glass windows or tinted cellophane. The light passing through such
objects is tinted by the appropriate color as the material selectively absorbs some frequencies of light while allowing
others to pass through. The color of the object is subtracted from the light passing through so this is called
subtractive transparency.

The 5th component, called t r ansmi t , specifies the amount of non-filtered light that is transmitted through a
surface. Some real-world examples of non-filtered transparency are thin see-through cloth, fine mesh netting and
dust on a surface. In these examples, all frequencies of light are allowed to pass through tiny holes in the surface.
Although the amount of light passing through is diminished, the color of the light passing through is unchanged. The
color of the object is added to the light passing through so this is called additive transparency.

Note that early versions of POV-Ray used the keyword al pha to specify filtered transparency. However that word
is often used to describe non-filtered transparency. For this reason al pha is no longer used.

May 1999 POV-Ray 3.1g User Documentation Page 154

Each of the five components of a color are float values which are normally in the range between 0.0 and 1.0.
However any values, even negatives may be used.

Under most circumstances the keyword col or is optional and may be omitted. We also support the British or
Canadian spelling col our . Colors may be specified using vectors, keywords with floats or identifiers. You may
also create very complex color expressions from combinations of any of these using various familiar operators. The
syntax for specifying a color has evolved since POV-Ray was first released. We have maintained the original
keyword-based syntax and added a short-cut vector notation. Either the old or new syntax is acceptable however the
vector syntax is easier to use when creating color expressions.

The syntax for combining color literals into color expressions is almost identical to the rules for vector and float
expressions. In the syntax for vector expressions below, some of the syntax items are defined in the section for float
expressions. See "Float Expressions” for those definitions. Detailed explanations of color-specific issues are given
in the following sub-sections.

COLOR:
COLOR_BODY |
col or COLOR_BODY | (this means the keyword col or or col our may
col our COLOR_BODY optionally precede any color specification)
COLOR_BODY:

COLOR_VECTOR |
COLOR_KEYWORD_GROUP |
COLOR_IDENTIFIER

COLOR_VECTOR:
r gb <3 Term_Vector> |
r gbf <4 Term_Vector> |
r gbt <4 _Term_Vector> |
[rgbft]<5 Term_Vector>

COLOR_KEYWORD_GROUP:
[COLOR_KEYWORD_ITEM]...

COLOR_KEYWORD_ITEM:
COLOR_IDENTIFIER [
red Red_Amount | bl ue Blue_Amount | green Green_Amount |
filter Filter_Amount | transm t Transmit_Amount

Note: COLOR_IDENTIFIERS are identifiers previously declared to have color values. The 3, 4, and 5 term vectors
are usually vector literals but may be vector expressions or floats promoted to vectors. See "Operator Promotion"
and the sections below.

4.15.1 Color Vectors

The syntax for a color vector is...

COLOR_VECTOR:
r gb <3 Term_Vector> |
r gbf <4 _Term_Vector> |
rgbt <4 Term_Vector> |
[rgbft]<5 Term_Vector>

...where the vectors are any valid vector expressions of 3, 4 or 5 components. For example
color rgh <1.0, 0.5, 0.2>

This specifies a color whose red component is 1.0 or 100% of full intensity. The green component is 0.5 or 50% of
full intensity and the blue component is 0.2 or 20% of full intensity. Although the filter and transmit components are
not explicitly specified, they exist and are set to their default values of 0 or no transparency.

May 1999 POV-Ray 3.1g User Documentation Page 155

The r gbf keyword requires a four component vector. The 4th component is the filter component and the transmit
component defaults to zero. Similarly the r gbt keyword requires four components where the 4th value is moved to
the 5th component which is transmit and then the filter component is set to zero.

The r gbf t keyword allows you to specify all five components. Internally in expressions all five are always used.

Under some circumstances, if the vector expression is a 5 component expression or there is a color identifier in the
expression then the r gbt f keyword is optional.

4.1.5.2 Color Keywords
The older keyword method of specifying a color is still useful and many users prefer it.

COLOR_KEYWORD_GROUP:
[COLOR_KEYWORD_ITEM]...

COLOR_KEYWORD_ITEM:
COLOR_IDENTIFIER |
red Red_Amount | bl ue Blue_Amount | green Green_Amount |
filter Filter_Amount | transm t Transmit_Amount

Although the col or keyword at the beginning is optional, it is more common to see it in this usage. This is
followed by any of five additional keywords r ed, gr een, bl ue,filter,ortransmi t. Each of these
component keywords is followed by a float expression. For example

color red 1.0 green 0.5

This specifies a color whose red component is 1.0 or 100% of full intensity and the green component is 0.5 or 50%
of full intensity. Although the blue, filter and transmit components are not explicitly specified, they exist and are set
to their default values of 0. The component keywords may be given in any order and if any component is
unspecified its value defaults to zero. A COLOR_IDENTIFIER can also be specified but it should always be first in
the group. See "Common Color Pitfalls" for details.

4.15.3 Color Identifiers

Color identifiers may be declared to make scene files more readable and to parameterize scenes so that changing a
single declaration changes many values. An identifier is declared as follows.

COLOR_DECLARATION:
#decl ar e IDENTIFIER = COLOR; |
#l ocal IDENTIFIER = COLOR,;

Where IDENTIFIER is the name of the identifier up to 40 characters long and COLOR is any valid specification.
Note that there should be a semi-colon at the end of the declaration. This semi-colon is new with POV-Ray version
3.1. If omitted, it generates a warning and some macros may not work properly. See "#declare vs. #local" for
information on identifier scope. Here are some examples....

#declare Wiite = rgb <1, 1, 1>;

#decl are Cyan = color blue 1.0 green 1.0;
#declare Wird = rgb <Foo*2, Bar - 1, Bob/ 3>;
#decl are LightGray = Wite*0.8;

#decl are Li ghtCyan = Cyan red 0. 6;

As the Li ght Gr ay example shows you do not need any color keywords when creating color expressions based on
previously declared colors. The last example shows you may use a color identifier with the keyword style syntax.
Make sure that the identifier comes first before any other component keywords.

Like floats and vectors, you may re-define colors throughout a scene but the need to do so is rare.

May 1999 POV-Ray 3.1g User Documentation Page 156

4.1.5.4 Color Operators

Color vectors may be combined in expressions the same as float or vector values. Operations are performed on a
component-by-component basis. For example r gb <1. 0, 0. 5, 0. 2>*0. 9 evaluates the same as
rgh<1.0,0.5,0.2>*<0.9, 0.9, 0. 9>0rrgb<0. 9, 0. 45, 0. 18>. Other operations are done on a similar
component-by-component basis.

You may use the dot operator to extract a single component from a color. Suppose the identifier Shade was
previously defined as a color. Then Shade. r ed is the float value of the red component of Shade. Similarly
Shade. gr een, Shade. bl ue, Shade. fil ter and Shade. t ransmi t extract the float value of the other
color components.

4155 Common Color Pitfalls

The variety and complexity of color specification methods can lead to some common mistakes. Here are some
things to consider when specifying a color.

When using filter transparency, the colors which come through are multiplied by the primary color components. For
example if gray light such as r gb<0. 9, 0. 9, 0. 9> passes through a filter such as r gbf <1. 0, 0. 5, 0. 0, 1. 0>
the result is r gb<0. 9, 0. 45, 0. 0> with the red let through 100%, the green cut in half from 0.9 to 0.45 and the
blue totally blocked. Often users mistakenly specify a clear object by

color filter 1.0

but this has implied red, green and blue values of zero. You've just specified a totally black filter so no light passes
through. The correct way is either

color red 1.0 green 1.0 blue 1.0 filter 1.0
or
color transnmt 1.0

In the 2nd example it doesn't matter what the rgb values are. All of the light passes through untouched.

Another pitfall is the use of color identifiers and expressions with color keywords. For example...
color My_Color red 0.5

this substitutes whatever was the red component of My_Col or with a red component of 0.5 however...
color My_Color + red 0.5

adds 0.5 to the red component of My__Col or and even less obvious...
color My_Color * red 0.5

that cuts the red component in half as you would expect but it also multiplies the green, blue, filter and transmit
components by zero! The part of the expression after the multiply operator evaluates to r gbf t <0. 5, 0, 0, 0, 0>
as a full 5 component color.
The following example results in no change to My__Col or .

color red 0.5 My_Col or
This is because the identifier fully overwrites the previous value. When using identifiers with color keywords, the
identifier should be first.
Another issue to consider: some POV-Ray syntax allows full color specifications but only uses the rgb part. In these
cases it is legal to use a float where a color is needed. For example:

finish { anbient 1}

The ambient keyword expects a color so the value 1 is promoted to <1, 1, 1, 1, 1> which is no problem. However

May 1999 POV-Ray 3.1g User Documentation Page 157

pigment { color 0.4 }

is legal but it may or may not be what you intended. The 0. 4 is promoted to <0. 4, 0. 4, 0. 4, 0. 4, 0. 4> with
the filter and transmit set to 0.4 as well. It is more likely you wanted...

pigment { color rgb 0.4 }

in which case a 3 component vector is expected. Therefore the 0. 4 is promoted to <0. 4, 0. 4, 0. 4, 0. 0, 0. 0>
with default zero for filter and transmit.

Finally there is another problem which arises when using color dot operators in #decl ar e or #| ocal directives.
Consider the directive:

#decl are MyColor = rgb <0.75, 0.5, 0.75>;
#decl are RedAnt = MyCol or.red;

Now RedAmnt should be a float but unfortunately it is a color. POV-Ray looks at the first keyword after the equals
to try to guess what type of identifier you want. It sees the color identifier MyCol or and assumes you want to
declare a color. It then computes the float value as 0.75 then promotes that into
rgbft<0.75,0.75,0.75,0.75,0. 75>

It would take a major rewrite to fix this problem so we're just warning you about it. Any of the following work-
arounds will work properly.

#decl are RedAnt
#decl are RedAnt
#decl are RedAnt

0. 0+MyCol or . red;
1. 0*MyCol or. red;
(MyCol or.red);

4.1.6 Strings

The POV-Ray language requires you to specify a string of characters to be used as a file name, text for messages or
text for a text object. Strings may be specified using literals, identifiers or functions which return string values. See
"String Functions" for details on string functions. Although you cannot build string expressions from symbolic
operators such as are used with floats, vectors or colors, you may perform various string operations using string
functions. Some applications of strings in POV-Ray allow for non-printing formatting characters such as newline or
form-feed.

STRING:
STRING_FUNCTION |
STRING_IDENTIFIER |
STRING_LITERAL

STRING_LITERAL:
" up to 256 ASCII characters”

STRING_FUNCTION:
str(FLOAT, INT, INT) | concat(STRING, STRING, [STRING, ..]) | chr(INT) |
substr(STRING, INT, INT) | strupr(STRING) | strlw (STRING)

4.1.6.1 String Literals

String literals begin with a double quote mark " which is followed by up to 256 printable ASCII characters and are
terminated by another double quote mark. The following are all valid string literals:

"Here" "There" "myfile.gif" "textures.inc"

Note if you need to specify a quote mark in a string literal you must precede it with a backslash. For example
"Joe said \"Hello\" as he walked in."

is converted to

Joe said "Hello" as he walked in.

May 1999 POV-Ray 3.1g User Documentation Page 158

If you need to specify a backslash, most of the time you need do nothing special. However if the string ends in a
backslash, you will have to specify two. For example:

"This is a backslash \ and so is this\\"
Is converted to:
This is a backslash \ and so is this\

The substitution of \ " witha" occurs in all POV-Ray string literals regardless usage however other formatting
codes such as \ n for new line are only supported in user message streams. See "Text Formatting" for details.

4.1.6.2 String ldentifiers

String identifiers may be declared to make scene files more readable and to parameterize scenes so that changing a
single declaration changes many values. An identifier is declared as follows.

STRING_DECLARATION:
#decl are IDENTIFIER = STRING |
#l ocal IDENTIFIER = STRING

Where IDENTIFIER is the name of the identifier up to 40 characters long and STRING is any valid string
specification. Note that unlike floats, vectors, or colors, there need not be a semi-colon at the end of the declaration.
See "#declare vs. #local" for information on identifier scope. Here are some examples...

#decl are Font _Nane = "ariel.ttf"
#declare Inc_File = "nyfile.inc"
#decl are Nane "John"

#decl are Nane concat (Nane, " Doe")

As the last example shows, you can re-declare a string identifier and may use previously declared values in that re-
declaration.

4.1.6.3 String Functions

POV-Ray defines a variety of built-in functions for manipulating floats, vectors and strings. Function calls consist of
a keyword which specifies the name of the function followed by a parameter list enclosed in parentheses. Parameters
are separated by commas. For example:

keywor d(par aml, par anR)

The following are the functions which return string values. They take one or more float, integer, vector, or string
parameters. Assume that A is any valid expression that evaluates to a float; B, L, and P are floats which are truncated
to integers internally, S, S1, S2 etc are strings.

chr (B) Character whose ASCII value is B. Returns a single character string. The ASCII value of the
character is specified by an integer B which must be in the range 0 to 255. For example chr (70) is the string "F".
When rendering text objects you should be aware that the characters rendered for values of B > 127 are dependent
on the (TTF) font being used. Many (TTF) fonts use the Latin-1 (1SO 8859-1) character set, but not all do.

concat (S1, S2,...) Concatenate strings S1 and S2. Returns a string that is the concatenation of all parameter
strings. Must have at least 2 parameters but may have more. For example:
concat("Value is ", str(A 3,1), " inches")
If the float value Awas 12. 34321 the resultis" Val ue i s 12.3 i nches" whichisastring.
str (A, L, P): Convert float A to a formatted string. Returns a formatted string representation of float value A.

The integer parameter L specifies the minimum length of the string and the type of left padding used if the string's
representation is shorter than the minimum. If L is positive then the padding is with blanks. If L is negative then the

May 1999 POV-Ray 3.1g User Documentation Page 159

padding is with zeros. The overall minimum length of the formatted string is abs(L). If the string needs to be longer,
it will be made as long as necessary to represent the value.

The integer parameter P specifies the number of digits after the decimal point. If P is negative then a compiler-
specific default precision is use. Here are some examples:

str(123.456,0,3) "123.456"

str(123.456,4,3) "123.456"

str(123.456,9,3) " 123.456"

str(123.456,-9,3) "00123.456"

str(123.456,0,2) "123.46"

str(123.456,0,0) "123"

str(123.456,5,0) " 123"

str(123.000,7,2) " 123.00"

str(123.456,0,-1) "123.456000" (platform specific)

striw (S) Lower case of S. Returns a new string in which all upper case letters in the string S1 are converted
to lower case. The original string is not affected. For example strl wr ("Hel | o There! ") results in "hello
therel”.

substr (S, P, L) Sub-string from S. Returns a string that is a subset of the characters in parameter S
starting at the position specified by the integer value P for a length specified by the integer value L. For example
substr (" ABCDEFGH ", 4, 2) evaluates to the string "EF". If P+L>strlen(S) an error occurs.

strupr(S) Upper case of S. Returns a new string in which all lower case letters in the string S are converted
to upper case. The original string is not affected. For example st rupr ("Hel 1l o There!") results in "HELLO
THERE!".

See section "Float Functions" for other functions which are somewhat string-related but which return floats. In
addition to the above built-in functions, you may also define your own functions using the new #nacr o directive.
See the section "User Defined Macros" for more details.

4.1.7 Array ldentifiers

New in POV-Ray 3.1 you may now declare arrays of identifiers of up to five dimensions. Any item that can be
declared as an identifier can be declared in an array.

4.1.7.1 Declaring Arrays

The syntax for declaring an array is as follows:

STRING_DECLARATION:
#decl are IDENTIFIER=array[INT][[INT]]...[ARRAY_INITIALIZER] |
#l ocal IDENTIFIER=array[INT][[INT] J..[ARRAY_INITIALIZER]

ARRAY_INITIALIZER:
{ ARRAY_ITEM, [ARRAY_ITEM,]...}

ARRAY_ITEM:
RVALUE |
ARRAY_INITIALIZER

Where IDENTIFIER is the name of the identifier up to 40 characters long and INT is a valid float expression which
is internally truncated to an integer which specifies the size of the array. The optional ARRAY_INITIALIZER is
discussed in the next section "Array Initalizers". Here is an example of a one-dimensional, uninitalized array.

#decl are MyArray = array[10]

May 1999 POV-Ray 3.1g User Documentation Page 160

This declares an uninitalized array of ten elements. The elements are referenced as MyAr r ay[0] through

MyAr ray[9] . As yet, the type of the elements are undetermined. Once you have initialized any element of the
array, all other elements can only be defined as that type. An attempt to reference an uninitalized element results in
an error. For example:

#decl are MyArray = array[10];

#decl are MyArray[5] = pignent{Wite} //all other elements nust be
/] pi gnents too.

#decl are MyArray[2] = normal {bunps 0.2} //generates an error

#declare Thing = MyArray[4] //error: uninitalized array el ement

Multi-dimensional arrays up to five dimensions may be declared. For example:
#declare MyGid = array[4][5]

declares a 20 element array of 4 rows and 5 columns. Elements are referenced from MyGri d[O] [0] to
MyGri d[3] [4] . Although it is permissible to reference an entire array as a whole, you may not reference just one
dimension of a multi-dimensional array. For example:

#decl are MyArray = array[10]

#declare MyGrid = array[4][5]

#decl are YourArray = MyArray //this is ok
#declare YourGid = MGid //so is this
#declare OneRow = MyGid[2] //this is illegal

Large uninitalized arrays do not take much memory. Internally they are arrays of pointers so they probably use just 4
bytes per element. Once initialized with values, they consume memory depending on what you put in them.

The rules for local vs. global arrays are the same as any other identifier. Note that this applies to the entire array.
You cannot mix local and global elements in the same array. See "#declare vs. #local" for information on identifier
scope.

4.1.7.2 Array Initalizers
Because it is cumbersome to individually initialize the elements of an array, you may initialize it as it is created
using array initializer syntax. For example:

#i ncl ude "col ors.inc"
#decl are Fl agCol ors = array[3] {Red, Wite, Bl ue}

Multi-dimensional arrays may also be initialized this way. For example:

#declare Digits =
array[4][10]

{
{7,6,7,0,2,1,6,5,5, 0},
{1,2,3,4,5,6,7,8,9,0},
{0,9,8,7,6,5,4,3,2,1},
{1,1,2,2,3,3,4,4,5,5}
}

The commas are required between elements and between dimensions as shown in the example.

4.2 Language Directives

The POV Scene Language contains several statements called language directives which tell the file parser how to do
its job. These directives can appear in almost any place in the scene file - even in the middle of some other
statements. They are used to include other text files in the stream of commands, to declare identifiers, to define
macros, conditional, or looped parsing and to control other important aspects of scene file processing.

May 1999 POV-Ray 3.1g User Documentation Page 161

Each directive begins with the hash character # (often called a number sign or pound sign). It is followed by a
keyword and optionally other parameters.

In versions of POV-Ray prior to 3.0, the use of this # character was optional. Language directives could only be
used between objects, camera or light_source statements and could not appear within those statements. The
exception was the #i ncl ude which could appear anywhere. Now that all language directives can be used almost
anywhere, the # character is mandatory.

The following keywords introduce language directives.

#br eak #icase #debug #decl are
#def aul t #el se #end #f cl ose
#f open #l ocal #macr o #r ead

#r ender #statistics #swi tch #undef
#version #war ni ng #write

Earlier versions of POV-Ray considered the keyword #max_i nt er sect i ons and the keyword

#max_trace_Il evel tobe language directives but they have been moved to the gl obal _set t i ngs statement
and should be placed there without the # sign. Their use as a directive still works but it generates a warning and may
be discontinued in the future.

4.2.1 Include Files and the #include Directive.

The language allows include files to be specified by placing the line
#include "filenane.inc"

at any point in the input file. The filename may be specified by any valid string expression but it usually is a literal
string enclosed in double quotes. It may be up to 40 characters long (or your computer's limit), including the two
double-quote characters.

The include file is read in as if it were inserted at that point in the file. Using include is almost the same as cutting
and pasting the entire contents of this file into your scene.

Include files may be nested. You may have at most 10 nested include files. There is no limit on un-nested include
files.

Generally, include files have data for scenes but are not scenes in themselves. By convention scene files end in
. pov and include files end with . i nc.

It is legal to specify drive and directory information in the file specification however it is discouraged because it
makes scene files less portable between various platforms. Use of full lower case is also recommended but not
required.

It is typical to put standard include files in a special sub-directory. POV-Ray can only read files in the current
directory or one referenced by the Li br ary_Pat h option or +L switch. See section "Library Paths".

You may use the #l ocal directive to declare identifiers which are temporary in duration and local to the include
file in scope. For details see "#declare vs. #local".

4.2.2 The #declare and #local Directives

Identifiers may be declared and later referenced to make scene files more readable and to parameterize scenes so
that changing a single declaration changes many values. There are several built-in identifiers which POV-Ray
declares for you. See section "Built-in Float Identifiers" and "Built-in Vector Identifiers" for details.

May 1999 POV-Ray 3.1g User Documentation Page 162

4.2.2.1 Declaring identifiers

An identifier is declared as follows.

DECLARATION:
#decl ar e IDENTIFIER = RVALUE |
#l ocal IDENTIFIER = RVALUE

RVALUE:
FLOAT, | VECTOR; | COLOR; | STRING |
OBJECT | TEXTURE | PIGMENT | NORMAL | FINISH |
INTERIOR | MEDIA | DENSITY
COLOR_MAP | PIGMENT_MAP | SLOPE_MAP | NORMAL_MAP | DENSITY MAP |
CAMERA | LIGHT_SOURCE |
FOG | RAINBOW | SKY_SPHERE | TRANSFORM

Where IDENTIFIER is the name of the identifier up to 40 characters long and RVALUE is any of the listed items.
They are called that because they are values that can appear to the right of the equals sign. The syntax for each is in
the corresponding section of this language reference.

Here are some examples.

#decl are Rows = 5;

#decl are Count = Count +1;

#l ocal Here = <1, 2, 3>;

#declare Wiite = rgb <1, 1, 15;

#decl are Cyan = color blue 1.0 green 1.0;

#decl are Font _Nane = "ariel.ttf"

#decl are Rod = cylinder {-5*x, 5*x, 1}

#declare Ring = torus {5, 1}

#1 ocal Checks = pigment { checker Wite, Cyan }
obj ect{ Rod scale y*5 } /1 not "cylinder { Rod }"
obj ect {

Ri ng

pi gment { Checks scale 0.5 }

transf orm Skew

}

Note that there should be a semi-colon after the expression in all float, vector and color identifier declarations. This
semi-colon is new with POV-Ray version 3.1. If omitted, it generates a warning and some macros may not work
properly.

Declarations, like most language directives, can appear anywhere in the file - even within other statements. For
example:

#decl are Here=<1, 2, 3>;

#decl are Count =0; /1 initialize Count

uni on {

object { Rod translate Here*Count }

#decl are Count =Count +1; /1 re-declare inside union
object { Rod transl ate Here*Count }

#decl are Count =Count +1; // re-declare inside union
object { Rod translate Here*Count }
}

As this example shows, you can re-declare an identifier and may use previously declared values in that re-
declaration. However if you attempt to re-declare an identifier as anything other than its original type, it will
generate a warning message.

May 1999 POV-Ray 3.1g User Documentation Page 163

Note that object identifiers use the generic wrapper statement obj ect { ... } . You do not need to know what kind of
object it is.

Declarations may be nested inside each other within limits. In the example in the previous section you could declare
the entire union as a object. However for technical reasons there are instances where you may not use any language
directive inside the declaration of floats, vectors or color expressions. Although these limits have been loosened
somewhat for POV-Ray 3.1, they still exist.

Identifiers declared within #macr o ... #end blocks are not created at the time the macro is defined. They are only
created at the time the macro is actually invoked. Like all other items inside such a #macro definition, they are
ignored when the macro is defined.

4.2.2.2 #declare vs. #local

Identifiers may be declared either global using #dec! ar e or local using the #| ocal directive.

Those created by the #decl ar e directive are permanent in duration and global in scope. Once created, they are
available throughout the scene and they are not released until all parsing is complete or until they are specifically
released using #undef . See "Destroying Identifiers".

Those created by the #| ocal directive are temporary in duration and local in scope. They temporarily override any
identifiers with the same name. See "ldentifier Name ".

If #1 ocal isused inside a#macr o then the identifier is local to that macro. When the macro is invoked and the
#l ocal directive is parsed, the identifier is created. It persists until the #end directive of the macro is reached. At
the #end directive, the identifier is destroyed. Subsequent invocations of the macro create totally new identifiers.

Use of #1 ocal within an include file but not in a macro, also creates a temporary identifier that is local to that
include file. When the include file is included and the #l ocal directive is parsed, the identifier is created. It
persists until the end of the include file is reached. At the end of file the identifier is destroyed. Subsequent
inclusions of the file totally new identifiers.

Use of #1 ocal in the main scene file (not in an include file and not in a macro) is identical to #decl ar e. For
clarity sake you should not use #| ocal ina main file except in a macro.

There is currently no way to create permanent, yet local identifiers in POV-Ray.

Local identifiers may be specifically released early using #undef but in general there is no need to do so. See
"Destroying Identifiers".

4.2.2.3 ldentifier Name Collisions

Local identifiers may have the same names as previously declared identifiers. In this instance, the most recent, most
local identifier takes precedence. Upon entering an include file or invoking a macro, a new symbol table is created.

When referencing identifiers, the most recently created symbol table is searched first, then the next most recent and
so on back to the global table of the main scene file. As each macro or include file is exited, its table and identifiers
are destroyed. Parameters passed by value reside in the same symbol table as the one used for identifiers local to the
macro.

The rules for duplicate identifiers may seem complicated when multiply-nested includes and macros are involved,
but in actual practice the results are generally what you intended.

Consider this example: You have a main scene file called myscene. pov and it contains

#decl are A 123;
#declare B rgh<i, 2, 3>;

May 1999 POV-Ray 3.1g User Documentation Page 164

#declare C = 0;
#i ncl ude "nyinc.inc"

Inside the include file you invoke a macro called MyMacr o(J, K, L) . Note it isn't important where MyMacr o is
defined as long as it is defined before it is invoked. In this example, it is important that the macro is invoked from
within myi nc. i nc.

The identifiers A, B, and Care generally available at all levels. If either nyi nc. i nc or MyMacr o contain a line
such as #decl are C=C+1; then the value Cis changed everywhere as you might expect.

Now suppose inside myi nc. i nc you do...

#1 ocal A = 546;
The main version of A is hidden and a new A is created. This new A is also available inside MyMacr o because
MyMacr o is nested inside myi nc. i nc. Once you exit nyi nc. i nc, the local A is destroyed and the original A
with its value of 123 is now in effect. Once you have created the local A inside myi nc. i nc, there is no way to

reference the original global A unless you #undef A or exit the include file. Using #undef always undefines the
most local version of an identifier.

Similarly if MyMacr o contained...

#l ocal B = box{0, 1}

then a new identifier B is created local to the macro only. The original value of B remains hidden but is restored
when the macro is finished. Note that the local B need not have the same type as the original.

The complication comes when trying to assign a new value to an identifier at one level that was declared local at an
earlier level. Suppose inside nmyi nc. i nc you do...

#l ocal D = 789;
If you are inside nyi nc. i nc and you want to increment D by one, you might try to do...
#local D= D + 1;

but if you try to do that inside MyMacr o you'll create a new Dwhich is local to MyMacr o and not the D which is
external to MyMacr o but local to nyi nc. i nc. Therefore you've said "create a MyMacr o D from the value of
nyi nc. i nc's Dplus one". That's probably not what you wanted. Instead you should do...

#declare D= D + 1;
You might think this creates a new Dthat is global but it actually increments the myinc.inc version of D. Confusing
isn't it? Here are the rules:

1.) When referencing an identifier, you always get the most recent, most local version. By "referencing” we mean
using the value of the identifier in a POV-Ray statement or using it on the right of an equals sign in either a
#decl ar e or #l ocal .

2.) When declaring an identifier using the #| ocal keyword, the identifier which is created or has a new value
assigned, is ALWAYS created at the current nesting level of macros or include files.

3.) When declaring a NEW, NON-EXISTANT identifier using #decl ar e, it is created as fully global. It is put in
the symbol table of the main scene file.

4.) When ASSIGNING A VALUE TO AN EXISTING identifier using #decl ar e, it assigns it to the most recent,
most local version at the time.

In summary, #| ocal always means "the current level”, and #decl ar e means "global" for new identifiers and
"most recent" for existing identifiers.

May 1999 POV-Ray 3.1g User Documentation Page 165

4.2.2.4 Destroying Identifiers with #undef

Identifiers created with #decl| ar e will generally persist until parsing is complete. Identifiers created with #| ocal
will persist until the end of the macro or include file in which they were created. You may however un-define an
identifier using the #undef directive. For example:

#undef MyVal ue
If multiple local nested versions of the identifier exist, the most local most recent version is deleted and any
identically named identifiers which were created at higher levels will still exist.

See also "The #ifdef and #ifndef Directives".

4.2.3 File I/O Directives

New in POV-Ray 3.1 you may now open, read, write, append, and close plain ASCII text files while parsing POV-
Ray scenes. This feature is primarily intended to help pass information between frames of an animation. Values such
as an object's position can be written while parsing the current frame and read back during the next frame. Clever
use of this feature could allow a POV-Ray scene to generate its own include files or write self-modifying scripts. We
trust that users will come up with other interesting uses for this feature.

4.2.3.1 The #fopen Directive

Users may open a text file using the #f open directive. The syntax is as follows:

FOPEN_DIRECTIVE:
#f open IDENTIFIER "filename" OPEN_TYPE

OPEN_TYPE:
read | wite | append

Where IDENTIFIER is an undefined identifier used to reference this file as a file handle, "filename" is any string
literal or string expression which specifies the file name. Files opened with the r ead are open for read only. Those
opened with wr i t e create a new file with the specified name and it overwrites any existing file with that name.
Those opened with append opens a file for writing but appends the text to the end of any existing file.

The file handle identifier created by #f open is always global and remains in effect (and the file remains open) until
the scene parsing is complete or until you #f cl ose the file. You may use #i f def FILE_HANDLE_IDENTIFIER
to see if a file is open.

4.2.3.2 The #fclose Directive

Files opened with the #f open directive are automatically closed when scene parsing completes however you may
close a file using the #f cl ose directive. The syntax is as follows:

FCLOSE_DIRECTIVE:
#f cl ose FILE_HANDLE_IDENTIFIER

Where FILE_HANDLE_IDENTIFIER is previously opened file opened with the #f open directive. See "The
#fopen Directive".
4.2.3.3 The #read Directive

You may read string, float or vector values from a plain ASCII text file directly into POV-Ray variables using the
#read directive. The file must first be opened in "read" mode using the #fopen directive. The syntax for #read is as
follows:

May 1999 POV-Ray 3.1g User Documentation Page 166

READ_DIRECTIVE:
#r ead(FILE_HANDLE_IDENTIFIER, DATA_IDENTIFIER[, DATA_IDENTIFIER]...)

DATA_IDENTIFIER:
UNDECLARED_IDENTIFIER | FLOAT_IDENTIFIER |
VECTOR_IDENTIFIER | STRING_IDENTIFIER

Where FILE_HANDLE_IDENTIFIER is the previously opened file. It is followed by one or more
DATA_IDENTIFIERs separated by commas. The parentheses around the identifier list are required. A
DATA_IDENTIFIER is any undeclared identifier or any previously declared string identifier, float identifier, or
vector identifier. Undefined identifiers will be turned into global identifiers of the type determined by the data which
is read. Previously defined identifiers remain at whatever global/local status they had when originally created. Type
checking is performed to insure that the proper type data is read into these identifiers.

The format of the data to be read must be a series of valid string literals, float literals, or vector literals separated by
commas. Expressions or identifiers are not permitted in the data file however unary minus signs and exponential
notation are permitted on float values.

If you attempt to read past end-of-file, the file is automatically closed and the FILE_HANDLE_IDENTIFIER is
deleted from the symbol table. This means that the boolean function def i ned(IDENTIFIER) can be used to
detect end-of-file. For example:
#f open MyFile "nydata.txt" read
#whil e (defined(MFile))
#read (MyFil e, Var1l, Var 2, Var 3)

#end
4.2.3.4 The #write Directive

You may write string, float or vector values to a plain ASCII text file from POV-Ray variables using the #wri t e
directive. The file must first be opened in either wr i t e or append mode using the #f open directive. The syntax
for #wri t e is as follows:

WRITE_DIRECTIVE:
#wr i t e(FILE_HANDLE_ITEM, DATA_ITEM[, DATA_ITEM]..)

DATA_ITEM:
FLOAT | VECTOR | STRING

Where FILE_HANDLE_IDENTIFIER is the previously opened file. It is followed by one or more DATA_ITEMs
separated by commas. The parentheses around the identifier list are required. A DATA_ITEM is any valid string
expression, float expression, or vector expression. Float expressions are evaluated and written as signed float literals.
If you require format control, you should use the st r (VALUE, L, P) function to convert it to a formatted string.
See "String Functions" for details on the st r function. Vector expressions are evaluated into three signed float
constants and are written with angle brackets and commas in standard POV-Ray vector notation. String expressions
are evaluated and written as specified.

Note that data read by the #r ead directive must have comma delimiters between values and quotes around string
data but the #wr i t e directive does not automatically output commas or quotes. For example the following #r ead
directive reads a string, float and vector.

#read (MyFile, MyString, MyFl oat, MyVect)

It expects to read something like:

"A quote delinmeted string" , -123.45, <1,2,-3>
The POV-Ray code to write this might be:

#decl are Val 1 = -123. 45;

May 1999 POV-Ray 3.1g User Documentation Page 167

#declare Vectl = <1, 2, - 3>;
#wite (MFile,"\"A quote delimted string\",",Vvall,",", Vectl,"\n")

See "String Literals" and "Text Formatting" for details on writing special characters such as quotes, newling, etc.

4.2.4 The #default Directive

POV-Ray creates a default texture when it begins processing. You may change those defaults as described below.
Every time you specify at ext ur e statement, POV-Ray creates a copy of the default texture. Anything you put in
the texture statement overrides the default settings. If you attach a pi gment , nor mal , or f i ni sh to an object
without any texture statement then POV-Ray checks to see if a texture has already been attached. If it has a texture
then the pigment, normal or finish will modify the existing texture. If no texture has yet been attached to the object
then the default texture is copied and the pigment, normal or finish will modify that texture.

You may change the default texture, pigment, normal or finish using the language directive #def aul t as follows:

DEFAULT_DIRECTIVE:
#def aul t { DEFAULT_ITEM}

DEFAULT_ITEM:
TEXTURE | PIGMENT | NORMAL | FINISH

For example:

#def aul t {
t ext ur ef
pi gment {rgb <1, 0, 0>}
nor mal { burps 0. 3}
fini sh{anmbi ent 0.4}
}
}

means objects will default to red bumps and slightly high ambient finish. Note also you may change just part of it
like this:

#defaul t {
pi gment {rgb <1, 0, 0>}
}
This still changes the pigment of the default texture. At any time there is only one default texture made from the
default pigment, normal and finish. The example above does not make a separate default for pigments alone. Note
that the special texturest i | es and mat eri al _rmap or a texture with at ext ur e_map may not be used as
defaults.

You may change the defaults several times throughout a scene as you wish. Subsequent #def aul t statements
begin with the defaults that were in effect at the time. If you wish to reset to the original POV-Ray defaults then you
should first save them as follows:

/1At top of file
#declare Original _Default = texture {}

later after changing defaults you may restore it with...
#default {texture {Original_ Default}}

If you do not specify a texture for an object then the default texture is attached when the object appears in the scene.
It is not attached when an object is declared. For example:

#decl are My_(bj ect =
sphere{ <0,0,0>, 1} // Default texture not applied
object{ My_Cbject } [/ Default texture added here

You may force a default texture to be added by using an empty texture statement as follows:

May 1999 POV-Ray 3.1g User Documentation Page 168

#declare My_Thing =
sphere { <0,0,0>, 1 texture {} } // Default texture applied

The original POV-Ray defaults for all items are given throughout the documentation under each appropriate section.

4.25 The #version Directive

As POV-Ray as evolved from version 1.0 through 3.1 we have made every effort to maintain some amount of
backwards compatibility with earlier versions. Some old or obsolete features can be handled directly without any
special consideration by the user. Some old or obsolete features can no longer be handled at all. However some old
features can still be used if you warn POV-Ray that this is an older scene. The #ver si on directive can be used to
switch version compatibility to different setting several times throughout a scene file. The syntax is:

VERSION_DIRECTIVE:
#ver si on FLOAT,;

Note that there should be a semi-colon after the float expression in a #ver si on directive. This semi-colon is new
with POV-Ray version 3.1. If omitted, it generates a warning and some macros may not work properly.

Additionally you may use the Ver si on=n.n option or the +Mvn.n switch to establish the initial setting. See
"Language Version" for details. For example one feature introduced in 2.0 that was incompatible with any 1.0 scene
files is the parsing of float expressions. Using #ver si on 1. O turns off expression parsing as well as many
warning messages so that nearly all 1.0 files will still work. Naturally the default setting for this option is
#version 3. 1.

NOTE: Some obsolete or re-designed features are totally unavailable in POV-Ray 3.1 REGARDLES OF THE
VERSION SETTING. Details on these features are noted throughout this documentation.

The built-in float identifier ver si on contains the current setting of the version compatibility option. See "Built-in
Float Identifiers". Together with the built-in ver si on identifier the #ver si on directive allows you to save and
restore the previous values of this compatibility setting. The new #I ocal identifier option is especially useful here.
For example suppose myst uf f . i nc is in version 1 format. At the top of the file you could put:

#l ocal Tenp_Vers = version; [/ Save previous val ue

#version 1.0; /1 Change to 1.0 node
/1 Version 1.0 stuff goes here...
#version Tenp_Vers; /1 Restore previous version

Future versions of POV-Ray may not continue to maintain full backward compatibility even with the #ver si on
directive. We strongly encourage you to phase in 3.1 syntax as much as possible.

4.2.6 Conditional Directives

POV-Ray 3.0 allows a variety of new language directives to implement conditional parsing of various sections of
your scene file. This is especially useful in describing the motion for animations but it has other uses as well. Also
available is a #whi | e loop directive. You may nest conditional directives 200 levels deep.

4.2.6.1 The #if.. #else...#end Directives

The simplest conditional directive is a traditional #i f directive. It is of the form...

IF_DIRECTIVE:
#if (Cond) TOKENS... [#el se TOKENS...] #end

The TOKENS are any number of POV-Ray keyword, identifiers, or punctuation and (Cond) is a float expression
that is interpreted as a boolean value. The parentheses are required. The #end directive is required. A value of 0.0
is false and any non-zero value is true. Note that extremely small values of about 1e-10 are considered zero in case

May 1999 POV-Ray 3.1g User Documentation Page 169

of round off errors. If Cond is true, the first group of tokens is parsed normally and the second set is skipped. If
false, the first set is skipped and the second set is parsed. For example:

#decl are Wi ch=1

#i f (Wi ch)
box{ 0, 1}

#el se
sphere{0, 1}

#end

The box is parsed and the sphere is skipped. Changing the value of Whi ch to O means the box is skipped and the
sphere is used. The #el se directive and second token group is optional. For example:

#decl are Whi ch=1;
#i f (Wi ch)

box{ 0, 1}
#end

Changing the value of Wi ch to O means the box is removed.

4.2.6.2 The #ifdef and #ifndef Directives

The #i f def and #i f ndef directive are similar to the #i f directive however they is used to determine if an
identifier has been previously declared.

IFDEF_DIRECTIVE:
#i fdef (IDENTIFIER) TOKENS... [#el se TOKENS..] #end

IFNDEF_DIRECTIVE:
#i fndef (IDENTIFIER) TOKENS... [#el se TOKENS..] #end

If the IDENTIFIER exists then the first group of tokens is parsed normally and the second set is skipped. If false,
the first set is skipped and the second set is parsed. This is especially useful for replacing an undefined item with a
default. For example:

#ifdef (User_Thing)

/1l This section is parsed if the

/1 identifier "User_ Thing" was

/1 previously declared

obj ect{User_Thing} // invoke identifier
#el se

/1 This section is parsed if the

/1 identifier "User_ Thing" was not

/1 previously declared
box{<0,0,0>,<1,1,1>} // use a default
#end

/1 End of conditional part

The #i f ndef directive works the opposite. The first group is parsed if the identifier is not defined. As with the
#i f directive, the #el se clause is optional and the #end directive is required.

4.2.6.3 The #switch, #case, #range and #break Directives

A more powerful conditional is the #swi t ch directive. The syntax is as follows...

SWITCH_DIRECTIVE:
#swi t ch (Switch_Value) SWITCH_CLAUSE... [#el se TOKENS...] #end

SWITCH_CLAUSE:

May 1999 POV-Ray 3.1g User Documentation Page 170

#case(Case Value) TOKENS... [#break] |
#range(Low_Value, High Value) TOKENS... [#br eak]

The TOKENS are any number of POV-Ray keyword, identifiers, or punctuation and (Switch_Value) is a float
expression. The parentheses are required. The #end directive is required. The SWITCH_CLAUSE comes in two
varieties. Inthe #case variety, the float Switch_Value is compared to the float Case_Value. If they are equal, the
condition is true. Note that values whose difference is less than 1e-10 are considered equal in case of round off
errors. Inthe #r ange variety, Low_Value Switch and High_Value are floats separated by a comma and enclosed in
parentheses. If Low_Value <= Switch_Value and Switch_Value<=High_Value then the condition is true.

In either variety, if the clause's condition is true, that clause's tokens are parsed normally and parsing continues until
a #br eak, #el se or #end directive is reached. If the condition is false, POV-Ray skips until another #case or
#r ange is found.

There may be any number of #case or #r ange clauses in any order you want. If a clause evaluates true but no
#br eak is specified, the parsing will fall through to the next #case or #r ange and that clause conditional is
evaluated. Hitting #br eak while parsing a successful section causes an immediate jump to the #end without
processing subsequent sections, even if a subsequent condition would also have been satisfied.

An optional #el se clause may be the last clause. It is only executed if the clause before it was a false clause.

Here is an example:

#swi tch (VALUE)
#case (TEST_1)
/1 This section is parsed if VALUE=TEST_1
#break //First case ends
#case (TEST_2)
/1l This section is parsed if VALUE=TEST 2
#break //Second case ends
#range (LOW 1, H GH 1)
/1 This section is parsed if (VALUE>=LOW 1) &(VALUE<=HI GH 1)
#break //Third case ends
#range (LOW 2, H GH 2)
/1l This section is parsed if (VALUE>=LOW 2) & VALUE<=HI GH 2)
#break //Fourth case ends
#el se
/1 This section is parsed if no other case or
/1l range is true.
#end // End of conditional part

4.2.6.4 The #while...#end Directive

The #whi | e directive is a looping feature that makes it easy to place multiple objects in a pattern or other uses.

WHILE_DIRECTIVE:
#whil e (Cond) TOKENS... #end

The TOKENS are any number of POV-Ray keyword, identifiers, or punctuation marks which are the body of the
loop. The #whi | e directive is followed by a float expression that evaluates to a boolean value. A value of 0.0 is
false and any non-zero value is true. Note that extremely small values of about 1e-10 are considered zero in case of
round off errors. The parentheses around the expression are required. If the condition is true parsing continues
normally until an #end directive is reached. At the end, POV-Ray loops back to the #whi | e directive and the
condition is re-evaluated. Looping continues until the condition fails. When it fails, parsing continues after the
#end directive. Note it is possible for the condition to fail the first time and the loop is totally skipped. It is up to
the user to insure that something inside the loop changes so that it eventually terminates. Here is a properly
constructed loop example:

May 1999 POV-Ray 3.1g User Documentation Page 171

#decl are Count =0;
#whil e (Count < 5)
obj ect{ MWy Obj ect translate x*3*Count}
#decl are Count =Count +1;
#end

This example places five copies of MyQbj ect in a row spaced three units apart in the x-direction.

4.2.7 User Message Directives

With the addition of conditional and loop directives, the POV-Ray language has the potential to be more like an
actual programming language. This means that it will be necessary to have some way to see what is going on when
trying to debug loops and conditionals. To fulfill this need we have added the ability to print text messages to the
screen. You have a choice of five different text streams to use including the ability to generate a fatal error if you
find it necessary. Limited formatting is available for strings output by this method.

4.2.7.1 Text Message Streams
The syntax for a text message is any of the following:

TEXT_STREAM_DIRECTIVE:
#debug STRING
#error STRING
#render STRING
#stati stics STRING
#war ni ng STRING

Where STRING is any valid string of text including string identifiers or functions which return strings. For example:

#switch (cl ock*360)
#range (0, 180)
#render "Clock in O to 180 range\n"
#br eak
#range (180, 360)
#render "Clock in 180 to 360 range\n"
#br eak
#el se
#war ni ng "C ock outside expected range\n"
#war ni ng concat ("Value is:",str(clock*360,5,0),"\n")
#end

There are seven distinct text streams that POV-Ray uses for output. You may output only to five of them. On some
versions of POV-Ray, each stream is designated by a particular color. Text from these streams are displayed
whenever it is appropriate so there is often an intermixing of the text. The distinction is only important if you choose
to turn some of the streams off or to direct some of the streams to text files. On some systems you may be able to
review the streams separately in their own scroll-back buffer. See "Directing Text Streams to Files" for details on re-
directing the streams to a text file.

Here is a description of how POV-Ray uses each stream. You may use them for whatever purpose you want except
note that use of the #er r or stream causes a fatal error after the text is displayed.

Debug: This stream displays debugging messages. It was primarily designed for developers but this and other
streams may also be used by the user to display messages from within their scene files.

Fatal: This stream displays fatal error messages. After displaying this text, POV-Ray will terminate. When the error
iS a scene parsing error, you may be shown several lines of scene text that leads up to the error.

May 1999 POV-Ray 3.1g User Documentation Page 172

Render: This stream displays information about what options you have specified to render the scene. It includes
feedback on all of the major options such as scene name, resolution, animation settings, anti-aliasing and others.

Statistics: This stream displays statistics after a frame is rendered. It includes information about the number of rays
traced, the length of time of the processing and other information.

Warning: This stream displays warning messages during the parsing of scene files and other warnings. Despite the
warning, POV-Ray can continue to render the scene.

The banner and status streams can not be accessed by the user.

4.2.7.2 Text Formatting

Some escape sequences are available to include non-printing control characters in your text. These sequences are
similar to those used in string literals in the C programming language. The sequences are:

"\a" Bell or alarm, 0x07
"\ b" Backspace, 0x08
"\ Form feed, 0x0C
"\'n" New line (line feed) | Ox0A
“\r" Carriage return 0x0D
"\t Horizontal tab 0x09
"\v" Vertical tab 0x0B
"\ 0" Null 0x00
A Backslash 0x5C
"\t Single quote 0x27
A Double quote 0x22

For example:

#debug "This is one line.\nBut this is another"
Depending on what platform you are using, they may not be fully supported for console output. However they will
appear in any text file if you re-direct a stream to a file.

Note that most of these control characters only apply in text message directives and #wr i t e directives which write
strings They are not implemented for other string usage in POV-Ray such as text objects or file names.

4.2.8 User Defined Macros

New in POV-Ray 3.1 are user defined macros with parameters. This new feature, along with the ability to declare
#1 ocal variables, turns the POV-Ray Language into a fully functional programming language. It should now be
possible to write scene generation utilities that previously required external utilities.

4.2.8.1 The #macro Directive
The syntax for declaring a macro is:

MACRO_DEFINITION:
#macro IDENTIFIER ([PARAM_IDENT] [, PARAM_IDENT]...) TOKENS... #end

Where IDENTIFIER is the name of the macro and PARAM_IDENTS are a list of zero or more formal parameter
identifiers separated by commas and enclosed by parentheses. The parentheses are required even if no parameters
are specified.

The TOKENS are any number of POV-Ray keyword, identifiers, or punctuation marks which are the body of the

macro. The body of the macro may contain almost any POV-Ray syntax items you desire. It is terminated my the
#end directive. Note however that any conditional directives such as #i f ...#end, #whi | e..#end, etc. must be

May 1999 POV-Ray 3.1g User Documentation Page 173

fully nested inside or outside the macro so that the corresponding #end directives pair-up properly. Also you may
not nest macro declarations.

A macro must be declared before it is invoked. All macro names are global in scope and permanent in duration.
You may redefine a macro by another #macr o directive with the same name. The previous definition is lost.
Macro names respond to #i f def , #i f ndef , and #undef directives. See "The #ifdef and #ifndef Directives" and
"Destroying Identifiers with #undef".

4.2.8.2 Invoking Macros

You invoke the macro by specifying the macro name followed by a list of zero or more actual parameters enclosed
in parentheses and separated by commas. The number of actual parameters must match the number of formal
parameters in the definition. The parentheses are required even if no parameters are specified. The syntax is:

MACRO_INVOCATION:
MACRO_IDENTIFIER ([ACTUAL_PARAM] [, ACTUAL_PARAM]...)

ACTUAL_PARAM:
IDENTIFIER |
RVALUE

An RVALUE is any value that can legally appear to the right of an equals sign in a #decl ar e or #| ocal
declaration. See "Declaring identifiers" for information on RVALUEs. When the macro is invoked, a new local
symbol table is created. The actual parameters are assigned to formal parameter identifiers as local, temporary
variables. POV-Ray jumps to the body of the macro and continues parsing until the matching #end directive is
reached. There, the local variables created by the parameters are destroyed as well as any local identifiers expressly
created in the body of the macro. It then resumes parsing at the point where the macro was invoked. It is as though
the body of the macro was cut and pasted into the scene at the point where the macro was invoked.

Here is a simple macro that creates a window frame object when you specify the inner and outer dimensions.

#macro Make_ Frame (Quter W dt h, Qut er Hei ght, | nner W dt h, | nner Hei ght , Dept h)
#1 ocal Horz (CQut er Hei ght - I nner Hei ght)/ 2;
#l ocal Vert (QuterWdth-Innerwdth)/2;
di fference

box{ <0, 0, 0>, <Qut er W dt h, Qut er Hei ght , Dept h>}
box{<Vert, Horz, - 0. 1>, <Cut er W dt h- Ver t, Qut er Hei ght - Hor z, Dept h+0. 1>}
}
#end
Make Frane(8, 10,7,9,1) //invoke the nmacro

In this example, the macro has five float parameters. The actual parameters (the values 8, 10, 7, 9, and 1) are
assigned to the five identifiers in the #macr o formal parameter list. It is as though you had used the following five
lines of code.

#l ocal QuterWdth = 8;

#1 ocal CQuterHei ght = 10;
#l ocal I nnerWdth, = 7;
#1 ocal | nnerHei ght = 9;

#l ocal Depth = 1;

These five identifiers are stored in the same symbol table as any other local identifier such as Hor z or Ver t in this
example. The parameters and local variables are all destroyed when the #end statement is reached. See "ldentifier
Name Collisions" for a detailed discussion of how local identifiers, parameters, and global identifiers work when a
local identifier has the same name as a previously declared identifier.

May 1999 POV-Ray 3.1g User Documentation Page 174

4.2.8.3 Are POV-Ray Macros a Function or a Macro?

POV-Ray macros are a strange mix of macros and functions. In traditional computer programming languages, a
macro works entirely by token substitution. The body of the routine is inserted into the invocation point by simply
copying the tokens and parsing them as if they had been cut and pasted in place. Such cut-and-paste substitution is
often called macro substitution because it is what macros are all about. In this respect, POV-Ray macros are exactly
like traditional macros in that they use macro substitution for the body of the macro. However traditional macros
also use this cut-and-paste substitution strategy for parameters but POV-Ray does not.

Suppose you have a macro in the C programming language Typi cal _Crac(Par am) and you invoke it as

Typi cal _Cnac(el se A=B) . Anywhere that Par amappears in the macro body, the four tokens el se, A, =,
and B are substituted into the program code using a cut-and-paste operation. No type checking is performed because
anything is legal. The ability to pass an arbitrary group of tokens via a macro parameter is a powerful (and sadly
often abused) feature of traditional macros.

After careful deliberation, we have decided against this type of parameters for our macros. The reason is that POV-
Ray uses commas more frequently in its syntax than do most programming languages. Suppose you create a macro
that is designed to operate on one vector and two floats. It might be defined Qur Mac(V, F1, F2) . If you allow
arbitrary strings of tokens and invoke a macro such as Qur Mac(<1, 2, 3>, 4, 5) then it is impossible to tell if this
is a vector and two floats or if its 5 parameters with the two tokens < and 1 as the first parameter. If we design the
macro to accept 5 parameters then we cannot invoke it like this... Qur Mac(MyVect or, 4, 5) .

Function parameters in traditional programming languages do not use token substitution to pass values. They create
temporary, local variables to store parameters that are either constant values or identifier references which are in
effect a pointer to a variable. POV-Ray macros use this function-like system for passing parameters to its macros.
In our example Qur Mac(<1, 2, 3>, 4, 5), POV-Ray sees the < and knows it must be the start of a vector. It
parses the whole vector expression and assigns it to the first parameter exactly as though you had used the statement
#l ocal V=<1, 2, 3>;.

Although we say that POV-Ray parameters are more like traditional function parameters than macro parameters,
there still is one difference. Most languages require you to declare the type of each parameter in the definition
before you use it but POV-Ray does not. This should be no surprise because Most languages require you to declare
the type of any identifier before you use it but POV-Ray does not. This means that if you pass the wrong type value
in a POV-Ray macro parameter, it may not generate an error until you reference the identifier in the macro body.
No type checking is performed as the parameter is passed. So in this very limited respect, POV-Ray parameters are
somewhat macro-like but are mostly function-like.

4.2.8.4 Returning a Value Like a Function

POV-Ray macros have a variety of uses. Like most macros, they provide a parameterized way to insert arbitrary
code into a scene file. However most POV-Ray macros will be used like functions or procedures in a traditional
programming language. This is especially true because the POV-Ray language has no user-defined functions or
procedures. Macros are designed to fill all of these roles.

When the body of a macro consists of statements that create an entire item such as an object, texture, etc. then the
macro acts like a function which returns a single value. The Make_Fr ane macro example in the section "Invoking
Macros" above is such a macro which returns a value that is an object. Here are some examples of how you might
invoke it.

union { //make a union of two objects
obj ect{ Make_Frane(8,10,7,9,1) translate 20*x}
obj ect{ Make_ Frane(8,10,7,9,1) translate -20*x}
}
#decl are Bi gFrame = object{ Mke_Frane(8,10,7,9,1)}
#decl are Smal | Frame = object{ Mke_Frane(5, 4,4, 3,0.5)}

May 1999 POV-Ray 3.1g User Documentation Page 175

Because no type checking is performed on parameters and because the expression syntax for floats, vectors, and
colors is identical, you can create clever macros which work on all three. See the sample scene MACRC3. POV
which includes this macro to interpolate values.

/1 Define the macro. Paraneters are:
/1 T: Mddle value of tine
/1 T1: Initial tinme
/1 T2: Final time
/1 P1l: Initial position (may be float, vector or color)
/1 P2: Final position (may be float, vector or color)
/1 Result is a value between P1 and P2 in the same proportion
/1 as T is between T1 and T2.
#macro Interpolate(T, T1, T2, P1, P2)
(P1+(T1+T/ (T2-T1))*(P2-P1))

#end
You might invoke it with P1 and P2 as floats, vectors, or colors as follows.
spher e{
Interpolate(l, 0, 15,<2,3,4>,<9,8,7>), //center location is vector
I nterpolate(l, 0, 15,3.0,5.5) /lradius is float
pi gnent {
color Interpolate(l,O0,15,rgb<1,1, 0>, rgb<0, 1, 1>)
}
}

As the float value | varies from 0 to 15, the location, radius, and color of the sphere vary accordingly.

There is a danger in using macros as functions. In a traditional programming language function, the result to be
returned is actually assigned to a temporary variable and the invoking code treats it as a variable of a given type.
However macro substitution may result in invalid or undesired syntax. Note the definition of the macro

I nt er pol at e above has an outermost set of parentheses. If those parentheses are omitted, it will not matter in the
examples above, but what if you do this...

#decl are Value = Interpolate(l, 0,15, 3.0,5.5)*15;
The end result is as if you had done...

#decl are Val ue = P1+(T1+T/(T2-T1))*(P2-P1) * 15;
which is syntactically legal but not mathematically correct because the P1 term is not multiplied. The parentheses
in the original example solves this problem. The end result is as if you had done...

#decl are Value = (P1+(T1+T/(T2-T1))*(P2-P1)) * 15;

which is correct.

4.2.8.,5 Returning Values Via Parameters

Sometimes it is necessary to have a macro return more than one value or you may simply prefer to return a value via
a parameter as is typical in traditional programming language procedures. POV-Ray macros are capable of
returning values this way. The syntax for POV-Ray macro parameters says that the actual parameter may be an
IDENTIFIER or an RVALUE. Values may only be returned via a parameter if the parameter is an IDENTIFIER.
Parameters that are RVALUES are constant values that cannot return information. An RVALUE is anything that
legally may appear to the right of an equals sign in a #decl ar e or #l ocal directive. For example consider the
following trivial macro which rotates an object about the x-axis.

#macro Turn_Me(St uff, Degrees)
#declare Stuff = object{Stuff rotate x*Degrees}
#end

May 1999 POV-Ray 3.1g User Documentation Page 176

This attempts to re-declare the identifier St uf f as the rotated version of the object. However the macro might be
invoked with Tur n_Me(box{ 0, 1}, 30) which uses a box object as an RVALUE parameter. This won't work
because the box is not an identifier. You can however do this

#decl are MyQbj ect =box{0, 1}

Turn_Me(MyQbj ect, 30)

The identifier MyObj ect now contains the rotated box.

See "ldentifier Name Collisions" for a detailed discussion of how local identifiers, parameters, and global identifiers
work when a local identifier has the same name as a previously declared identifier.

While it is obvious that MyQbj ect is an identifier and box{ 0, 1} is not, it should be noted that

Tur n_Me(obj ect { MyObj ect }, 30) will not work because obj ect { MyCbj ect } is considered an object
statement and is not a pure identifier. This mistake is more likely to be made with float identifiers verses float
expressions. Consider these examples.

#decl are Val ue=5. 0O;

MyMacr o(Val ue) /1 MyMacro can change the val ue of Value but...
MyMacr o(+Val ue) /1 This version and the rest are not |one
MyMacro(Val ue+0.0) // identifiers. They are fl oat expressions
MyMacr o(Val ue*1.0) // which cannot be changed.

Although all four invocations of MyMacr o are passed the value 5.0, only the first may modify the value of the
identifier.

4.3 POV-Ray Coordinate System

Objects, lights and the camera are positioned using a typical 3D coordinate system. The usual coordinate system for
POV-Ray has the positive y-axis pointing up, the positive x-axis pointing to the right and the positive z-axis pointing
into the screen. The negative values of the axes point the other direction as shown in the images in section
"Understanding POV-Ray's Coordinate System".

Locations within that coordinate system are usually specified by a three component vector. The three values
correspond to the x, y and z directions respectively. For example, the vector <1, 2, 3> means the point that's one
unit to the right, two units up and three units in front of the center of the universe at <0, 0, 0>.

Vectors are not always points though. They can also refer to an amount to size, move or rotate a scene element or to
modify the texture pattern applied to an object.

The size, location, orientation, and deformation of items within the coordinate system is controlled by modifiers
called transformations. The follow sub-sections describe the transformations and their usage.

4.3.1 Transformations

The supported transformations are r ot at e, scal e, and t r ans| at e. They are used to turn, size and move an
object or texture. A transformation matrix may also be used to specify complex transformations directly. Groups of
transformations may be merged together and stored in a transformation identifier. The syntax for transformations is
as follows.

TRANSFORMATION:
r ot at e <Rotate_ Amt>
scal e <Scale_ Amt>
transl at e <Translate_ Amt>
transf or mMTRANSFORM_IDENTIFIER
mat ri x <Val00, Val0l, Val02,
Vall0, Valll, Vall2,

May 1999 POV-Ray 3.1g User Documentation Page 177

Val20, Val21, Val22,
Val30, Val3l, Val32>

TRANSFORM_DECLARATION:
#decl ar e IDENTIFIER = transf or { TRANSFORMATION... } |
#1 ocal IDENTIFIER = transfor m{ TRANSFORMATION... }

4.3.1.1 Translate

Items may be moved by adding at r ansl at e modifier. It consists of the keyword t r ansl at e followed by a
vector expression. The three terms of the vector specify the number of units to move in each of the x, y and z
directions. Translate moves the element relative to it's current position. For example
sphere { <10, 10, 10>, 1
pi gment { Green }
translate <-5, 2, 1>

}

will move the sphere from the location <10, 10, 10> to <5, 12, 11>. It does not move it to the absolute location
<-5, 2, 1>, Translations are always relative to the item's location before the move. Translating by zero will leave
the element unchanged on that axis. For example:

sphere { <10, 10, 10>, 1

pi gment { Green }

translate 3*x // evaluates to <3,0,0> so nove 3 units
/1 in the x direction and none along y or z

}

4.3.1.2 Scale

You may change the size of an object or texture pattern by adding a scal e modifier. It consists of the keyword
scal e followed by a vector expression. The three terms of the vector specify the amount of scaling in each of the x,
y and z directions.

Uneven scaling is used to stretch or squish an element. Values larger than one stretch the element on that axis while
values smaller than one are used to squish it. Scale is relative to the current element size. If the element has been
previously re-sized using scale then scale will size relative to the new size. Multiple scale values may used.

For example

sphere { <0,0,0>, 1
scale <2,1,0.5>

}

will stretch and smash the sphere into an ellipsoid shape that is twice the original size along the x-direction, remains
the same size in the y-direction and is half the original size in the z-direction.

If a lone float expression is specified it is promoted to a three component vector whose terms are all the same. Thus
the item is uniformly scaled by the same amount in all directions. For example:
obj ect {
My Obj ect
scale 5 // Evaluates as <5,5,5> so unifornly scale
/1 by 5 in every direction.

May 1999 POV-Ray 3.1g User Documentation Page 178

4.3.1.3 Rotate

You may change the orientation of an object or texture pattern by adding a r ot at e modifier. It consists of the
keyword r ot at e followed by a vector expression. The three terms of the vector specify the number of degrees to
rotate about each of the x-, y- and z-axes.

Note that the order of the rotations does matter. Rotations occur about the x-axis first, then the y-axis, then the z-
axis. If you are not sure if this is what you want then you should only rotate on one axis at a time using multiple
rotation statements to get a correct rotation. As in

rotate <0, 30, 0> // 30 degrees around Y axis then,
rotate <-20, 0, 0> // -20 degrees around X axis then,
rotate <0, 0, 10> // 10 degrees around Z axis.

Rotation is always performed relative to the axis. Thus if an object is some distance from the axis of rotation it will
not only rotate but it will orbit about the axis as though it was swinging around on an invisible string.

POV-Ray uses a left-handed rotation system. Using the famous "Computer Graphics Aerobics" exercise, you hold
up your left hand and point your thumb in the positive direction of the axis of rotation. Your fingers will curl in the
positive direction of rotation. Similarly if you point your thumb in the negative direction of the axis your fingers will
curl in the negative direction of rotation. See "Understanding POV-Ray's Coordinate System" for a illustration.

4.3.1.4 Matrix Keyword

The mat r i x keyword can be used to explicitly specify the transformation matrix to be used for objects or textures.
Its syntax is:

MATRIX:
mat ri x <Val00, Val01, Vval02,
Val10, Valll, Vall2,
Val20, Val2l, Val22,
Val30, Val31, Val32>

Where Val00 through Val32 are float expressions enclosed in angle brackets and separated by commas. Note this is
not a vector. It is a set of 12 float expressions. These floats specify the elements of a 4 by 4 matrix with the fourth
column implicitly set to <0, 0, 0, 1>. At any given point P, P=<px, py, pz>, is transformed into the point Q,
Q=<ax, ay, qz> by

gx = Val00 * px + Val10 * py + Val20 * pz + Val30

gy = Val0l * px + Valll * py + Val21 * pz + Val3l

gz = Val02 * px + Vall2 * py + Val22 * pz + Val32

Normally you won't use the matrix keyword because it's less descriptive than the transformation commands and
harder to visualize. However the matrix command allows more general transformation effects like shearing. The
following matrix causes an object to be sheared along the y-axis.
obj ect {
My Obj ect
matrix <1, 1, 0,

4.3.2 Transformation Order

Because rotations are always relative to the axis and scaling is relative to the origin, you will generally want to
create an object at the origin and scale and rotate it first. Then you may translate it into its proper position. It is a
common mistake to carefully position an object and then to decide to rotate it. However because a rotation of an

May 1999 POV-Ray 3.1g User Documentation Page 179

object causes it to orbit about the axis, the position of the object may change so much that it orbits out of the field of
view of the camera!

Similarly scaling after translation also moves an object unexpectedly. If you scale after you translate the scale will
multiply the translate amount. For example

translate <5, 6, 7>
scale 4

will translate to <20, 24, 28> instead of <5, 6, 7>. Be careful when transforming to get the order correct for your
purposes.

4.3.3 Transform Identifiers

At times it is useful to combine together several transformations and apply them in multiple places. A transform
identifier may be used for this purpose. Transform identifiers are declared as follows:

TRANSFORM_DECLARATION:
#decl ar e IDENTIFIER = tr ansf or { TRANSFORMATION... } |
#1 ocal IDENTIFIER = transfor m{ TRANSFORMATION... }

Where IDENTIFIER is the name of the identifier up to 40 characters long and TRANSFORMATION is any valid
transformation modifier. See "#declare vs. #local" for information on identifier scope. Here is an example...

#decl are MyTrans = transform {
rotate Thi s\ay
scal e SoMuch
rotate -ThisWay
scal e Bigger
transl ate OverThere
rotate WayAr ound

}

A transform identifier is invoked by the t r ansf or mkeyword without any brackets as shown here:

obj ect {

My Obj ect /1l Get a copy of MyQhject
transform MyTrans // Apply the transformation
translate -x*5 /1 Then nove it 5 units left

}

obj ect {

My Obj ect /1 Get another copy of MyQhject
transform MyTrans // Apply the same transformation
translate x*5 // Then nove this one 5 units right

}

On extremely complex CSG objects with lots of components it may speed up parsing if you apply a declared
transformation rather than the individual t r ansl at e, r ot at e, scal e, or mat ri x modifiers. The t r ansf or m
is attached just once to each component. Applying each individual t r ansl at e, rot at e, scal e, ormat ri x
modifiers takes longer. This only affects parsing - rendering works the same either way.

4.3.4 Transforming Textures and Objects

When an object is transformed all textures attached to the object at that time are transformed as well. This means
that if you have at r ansl at e, r ot at e, scal e, or mat r i x modifier in an object before a texture, then the
texture will not be transformed. If the transformation is after the texture then the texture will be transformed with the
object. If the transformation is inside the t ext ur e statement then only the texture is affected. The shape remains
the same. For example:

sphere { 0, 1

May 1999 POV-Ray 3.1g User Documentation Page 180

texture { Jade } // texture identifier from TEXTURES. | NC
scale 3 /1 this scale affects both the
/1 shape and texture

}

sphere { 0, 1

scale 3 /1l this scale affects the shape only
texture { Jade }

}
sphere { 0, 1
texture {
Jade
scale 3 /1 this scale affects the texture only

}
}

Transformations may also be independently applied to pigment patterns and surface normal patterns. Note that
scaling a normal pattern affects only the width and spacing. It does not affect the apparent height or depth of the
bumps. For example:

box { <0, 0, 0> <1, 1, 1>
texture {
pi gment {
checker Red, Wite
scale 0.25 // This affects only the color pattern
}
nor mal {
bunps 0.3 // This specifies apparent height of bunps
scale 0.2 // Scales dianmeter and space between bunps
/1 but not the height. Has no effect on
/1 color pattern.

}
rotate y*45 // This affects the entire texture but
} /1 not the object.

}

4.4 Camera

The camera definition describes the position, projection type and properties of the camera viewing the scene. Its
syntax is:

CAMERA:
caner a{ [CAMERA_ITEMS...] }

CAMERA_ITEM:
CAMERA_TYPE | CAMERA_VECTOR | CAMERA_MODIFIER | CAMERA_IDENTIFIER

CAMERA_TYPE:
perspective | orthographic | fisheye | ultra_w de_angle |
omi max | panoramic | cylinder CylinderType

CAMERA_VECTOR:
| ocati on <Location> | right <Right> | up <Up> | directi on <Direction> |
sky <Sky>

CAMERA_MODIFIER:
angl e Degrees | | ook_at <Look At> |
bl ur _sanpl es Num_of Samples | aperture Size | focal _poi nt <Point> |
confi dence Blur_Confidence | vari ence Blur_Varience |
NORMAL |

May 1999 POV-Ray 3.1g User Documentation Page 181

TRANSFORMATION

Depending on the projection type some of the parameters are required, some are optional and some aren't used. If no
projection type is given the perspective camera will be used (pinhole camera). If no camera is specified a default
camera is used. CAMERA_ITEMs may legally appear in any order but the order of some items is critical to the
proper functioning of the camera. Follow the guidelines in this document closely because POV-Ray will not stop
you from making mistakes.

4.4.1 Placing the Camera

The POV-Ray camera has ten different models, each of which uses a different projection method to project the scene
onto your screen. Regardless of the projection type all cameras use the | ocat i on, ri ght, up, di recti on, and
keywords to determine the location and orientation of the camera. The type keywords and these four vectors fully
define the camera. All other camera modifiers adjust how the camera does its job. The meaning of these vectors
and other modifiers differ with the projection type used. A more detailed explanation of the camera types follows
later. In the sub-sections which follows, we explain how to place and orient the camera by the use of these four
vectors and the sky and | ook_at maodifiers. You may wish to refer to the illustration of the perspective camera
below as you read about these vectors.

P

image plane —_|

look at
+0.5 9

/

location

The perspective camera.

4.4.1.1 Location and Look At

Under many circumstances just two vectors in the camera statement are all you need to position the camera:
| ocati onand | ook_at vectors. For example:

camera f{
| ocation <3,5,-10>
| ook_at <0, 2, 1>

}

The location is simply the X, y, z coordinates of the camera. The camera can be located anywhere in the ray-tracing
universe. The default location is <0, 0, 0>. The | ook_at vector tells POV-Ray to pan and tilt the camera until it

May 1999 POV-Ray 3.1g User Documentation Page 182

is looking at the specified X, y, z coordinates. By default the camera looks at a point one unit in the z-direction from
the location.

The | ook_at maodifier should almost always be the last item in the camera statement. If other camera items are
placed after the | ook_at wvector then the camera may not continue to look at the specified point.

4.4.1.2 The Sky Vector

Normally POV-Ray pans left or right by rotating about the y-axis until it lines up with the | ook_at point and then
tilts straight up or down until the point is met exactly. However you may want to slant the camera sideways like an
airplane making a banked turn. You may change the tilt of the camera using the sky vector. For example:

canera ({
| ocation <3,5,-10>
sky <1,1, 0>
| ook _at <0, 2, 1>

}

This tells POV-Ray to roll the camera until the top of the camera is in line with the sky vector. Imagine that the sky
vector is an antenna pointing out of the top of the camera. Then it uses the sky vector as the axis of rotation left or
right and then to tilt up or down in line with the sky until pointing at the | ook_at point. In effect you're telling
POV-Ray to assume that the sky isn't straight up. Note that the sky vector must appear before the | ook _at vector.

The sky vector does nothing on its own. It only modifies the way the | ook _at vector turns the camera. The
default value is sky<0, 1, 0>.

4.4.1.3 Angle

The angl e keyword followed by a float expression specifies the (horizontal) viewing angle in degrees of the
camera used. Even though it is possible to use the di r ect i on vector to determine the viewing angle for the
perspective camera it is much easier to use the angl e keyword.

When you specify the angl e, POV-Ray adjusts the length of the di r ect i on vector accordingly. The formula
used is direction_length = 0.5 * right_length / tan(angle / 2) where right_length is the length of the r i ght vector.
You should therefore specify the di r ecti on and ri ght vectors before the angl e keyword. Theri ght vector
is explained in the next section.

There is no limitation to the viewing angle except for the perspective projection. If you choose viewing angles larger
than 360 degrees you'll see repeated images of the scene (the way the repetition takes place depends on the camera).
This might be useful for special effects.

4.4.1.4 The Direction Vector

You will probably not need to explicitly specify or change the camera di r ect i on vector but it is described here in
case you do. It tells POV-Ray the initial direction to point the camera before moving it with the | ook_at or

r ot at e vectors (the default value is di r ect i on<0, 0, 1>). It may also be used to control the (horizontal) field
of view with some types of projection. The length of the vector determines the distance of the viewing plane from
the camera's location. A shorter di r ect i on vector gives a wider view while a longer vector zooms in for close-
ups. In early versions of POV-Ray, this was the only way to adjust field of view. However zooming should now be
done using the easier to use angl e keyword.

If you are using the ul t r a_wi de_angl e, panor ani c, orcyl i ndri cal projection you should use a unit
length di r ect i on vector to avoid strange results.

May 1999 POV-Ray 3.1g User Documentation Page 183

The length of the di r ect i on vector doesn't matter when using the or t hogr aphi c, f i sheye, or ormi max
projection types.

4.4.1.5 Up and Right Vectors

The primary purpose of the up and r i ght vectors is to tell POV-Ray the relative height and width of the view
screen. The default values are:

right 4/3*x
up 'y

In the default per spect i ve camera, these two vectors also define the initial plane of the view screen before
moving it with the | ook_at or r ot at e vectors. The length of the ri ght vector (together with the di r ecti on
vector) may also be used to control the (horizontal) field of view with some types of projection. The | ook _at
modifier changes both up and r i ght so you should always specify them before | ook_at . Also the angl e
calculation depends on the r i ght vector sori ght should precede it.

Most camera types treat the up and r i ght vectors the same as the per spect i ve type. However several make
special use of them. Inthe or t hogr aphi c projection: The lengths of the up and r i ght vectors set the size of
the viewing window regardless of the di r ect i on vector length, which is not used by the orthographic camera.

When using cyl i ndri cal projection: types 1 and 3, the axis of the cylinder lies along the up vector and the
width is determined by the length of r i ght vector or it may be overridden with the angl e vector. In type 3 the up
vector determines how many units high the image is. For example if you have up 4*y on a camera at the origin.
Only points from y=2 to y=-2 are visible. All viewing rays are perpendicular to the y-axis. For type 2 and 4, the
cylinder lies along the r i ght vector. Viewing rays for type 4 are perpendicular to the r i ght vector.

Note that the up, ri ght , and di r ect i on vectors should always remain perpendicular to each other or the image
will be distorted. If this is not the case a warning message will be printed. The vista buffer will not work for non-
perpendicular camera vectors. If you specify the 3 vectors as initially perpendicular and do not explicitly re-specify
the after any | ook_at orr ot at e vectors, the everything will work fine.

44151 AspectRatio

Together the up and r i ght vectors define the aspect ratio (height to width ratio) of the resulting image. The
default values up<0, 1, 0> and ri ght <1. 33, 0, 0> result in an aspect ratio of 4 to 3. This is the aspect ratio of a
typical computer monitor. If you wanted a tall skinny image or a short wide panoramic image or a perfectly square
image you should adjust the up and r i ght vectors to the appropriate proportions.

Most computer video modes and graphics printers use perfectly square pixels. For example Macintosh displays and
IBM SVGA modes 640x480, 800x600 and 1024x768 all use square pixels. When your intended viewing method
uses square pixels then the width and height you set with the W dt h and Hei ght options or +Wor +H switches
should also have the same ratio as the up and r i ght vectors. Note that 640/480 = 4/3 so the ratio is proper for this
square pixel mode.

Not all display modes use square pixels however. For example IBM VGA mode 320x200 and Amiga 320x400
modes do not use square pixels. These two modes still produce a 4/3 aspect ratio image. Therefore images intended
to be viewed on such hardware should still use 4/3 ratio on their up and r i ght vectors but the pixel settings will
not be 4/3.

For example:

canera ({
| ocation <3,5,-10>
up <0, 1, 0>
right <1,0,0>

May 1999 POV-Ray 3.1g User Documentation Page 184

| ook_at <0, 2, 1>
}

This specifies a perfectly square image. On a square pixel display like SVGA you would use pixel settings such as
+Wi80 +H480 or +W600 +H600. However on the non-square pixel Amiga 320x400 mode you would want to
use values of +WW240 +H400 to render a square image.

The bottom line issue is this: the up and r i ght vectors should specify the artist's intended aspect ratio for the
image and the pixel settings should be adjusted to that same ratio for square pixels and to an adjusted pixel
resolution for non-square pixels. The up and r i ght vectors should not be adjusted based on non-square pixels.

4.4.15.2 Handedness

Theri ght vector also describes the direction to the right of the camera. It tells POV-Ray where the right side of
your screen is. The sign of the r i ght vector can be used to determine the handedness of the coordinate system in
use. The default value is: ri ght <1. 33, 0, 0>. This means that the +x-direction is to the right. It is called a left-
handed system because you can use your left hand to keep track of the axes. Hold out your left hand with your palm
facing to your right. Stick your thumb up. Point straight ahead with your index finger. Point your other fingers to the
right. Your bent fingers are pointing to the +x-direction. Your thumb now points into +y-direction. Your index
finger points into the +z-direction.

To use a right-handed coordinate system, as is popular in some CAD programs and other ray-tracers, make the same
shape using your right hand. Your thumb still points up in the +y-direction and your index finger still points forward
in the +z-direction but your other fingers now say the +x-direction is to the left. That means that the right side of
your screen is now in the -x-direction. To tell POV-Ray to act like this you can use a negative x value in the r i ght
vector such as: ri ght <- 1. 33, 0, 0>. Since having x values increasing to the left doesn't make much sense on a
2D screen you now rotate the whole thing 180 degrees around by using a positive z value in your camera'’s location.
You end up with something like this.

camera f{
| ocation <0, 0, 10>
up <0, 1, 0>
right <-1.33,0,0>
| ook_at <0, 0, 0>

}

Now when you do your ray-tracer's aerobics, as explained in the section "Understanding POV-Ray's Coordinate
System", you use your right hand to determine the direction of rotations.

In a two dimensional grid, x is always to the right and y is up. The two versions of handedness arise from the
question of whether z points into the screen or out of it and which axis in your computer model relates to up in the
real world.

Architectural CAD systems, like AutoCAD, tend to use the God's Eye orientation that the z-axis is the elevation and
is the model's up direction. This approach makes sense if you're an architect looking at a building blueprint on a
computer screen. z means up, and it increases towards you, with x and y still across and up the screen. This is the
basic right handed system.

Stand alone rendering systems, like POV-Ray, tend to consider you as a participant. You're looking at the screen as
if you were a photographer standing in the scene. The up direction in the model is now y, the same as up in the real
world and x is still to the right, so z must be depth, which increases away from you into the screen. This is the basic
left handed system.

4.4.1.6 Transforming the Camera

The various transformations such as t r ansl at e and r ot at e modifiers can re-position the camera once you've
defined it. For example:

May 1999 POV-Ray 3.1g User Documentation Page 185

camera f{
|l ocation < 0, 0, 0>
direction < 0, 0, 1>
up <0, 1, 0>
right <1, 0, 0>
rotate <30, 60, 30>
translate < 5, 3, 4>

}

In this example, the camera is created, then rotated by 30 degrees about the x-axis, 60 degrees about the y-axis and
30 degrees about the z-axis, then translated to another point in space.

4.4.2 Types of Projection

The following list explains the different projection types that can be used with the camera. The most common types
are the perspective and orthographic projections. In general the CAMERA_TYPE should be the first item in a
caner a statement. If none is specified, the per spect i ve camera is the default.

Perspective projection: The per spect i ve specifies the default perspective camera which simulates the classic
pinhole camera. The (horizontal) viewing angle is either determined by the ratio between the length of the

di rect i on vector and the length of the r i ght vector or by the optional keyword angl e, which is the preferred
way. The viewing angle has to be larger than 0 degrees and smaller than 180 degrees. See the figure in "Placing the
Camera" for the geometry of the perspective camera.

Orthographic projection: This projection uses parallel camera rays to create an image of the scene. The size of the
image is determined by the lengths of the r i ght and up vectors.

If you add the or t hogr aphi ¢ keyword after all other parameters of a perspective camera you'll get an
orthographic view with the same image area, i.e. the size of the image is the same. In this case you needn't specify
the lengths of the r i ght and up vector because they'll be calculated automatically. You should be aware though
that the visible parts of the scene change when switching from perspective to orthographic view. As long as all
objects of interest are near the | ook_at point they'll be still visible if the orthographic camera is used. Objects
farther away may get out of view while nearer objects will stay in view.

Fisheye projection: This is a spherical projection. The viewing angle is specified by the angl e keyword. An angle
of 180 degrees creates the "standard" fisheye while an angle of 360 degrees creates a super-fisheye ("'1-see-
everything-view"). If you use this projection you should get a circular image. If this isn't the case, i.e. you get an
elliptical image, you should read "Aspect Ratio".

Ultra wide angle projection: This projection is somewhat similar to the fisheye but it projects the image onto a
rectangle instead of a circle. The viewing angle can be specified using the angl e keyword.

Omnimax projection: The omnimax projection is a 180 degrees fisheye that has a reduced viewing angle in the
vertical direction. In reality this projection is used to make movies that can be viewed in the dome-like Omnimax
theaters. The image will look somewnhat elliptical. The angl e keyword isn't used with this projection.

Panoramic projection: This projection is called "cylindrical equirectangular projection”. It overcomes the
degeneration problem of the perspective projection if the viewing angle approaches 180 degrees. It uses a type of
cylindrical projection to be able to use viewing angles larger than 180 degrees with a tolerable lateral-stretching
distortion. The angl e keyword is used to determine the viewing angle.

Cylindrical projection: Using this projection the scene is projected onto a cylinder. There are four different types
of cylindrical projections depending on the orientation of the cylinder and the position of the viewpoint. A float
value in the range 1 to 4 must follow the cyl i nder keyword. The viewing angle and the length of the up or

ri ght vector determine the dimensions of the camera and the visible image. The camera to use is specified by a
number. The types are:

May 1999 POV-Ray 3.1g User Documentation Page 186

vertical cylinder, fixed viewpoint

horizontal cylinder, fixed viewpoint

vertical cylinder, viewpoint moves along the cylinder's axis
horizontal cylinder, viewpoint moves along the cylinder's axis

W[N]

You should note that the vista buffer can only be used with the perspective and orthographic camera.

4.4.3 Focal Blur

POV-Ray can simulate focal depth-of-field by shooting a number of sample rays from jittered points within each
pixel and averaging the results.

To turn on focal blur, you must specify the aper t ur e keyword followed by a float value which determines the
depth of the sharpness zone. Large apertures give a lot of blurring, while narrow apertures will give a wide zone of
sharpness. Note that, while this behaves as a real camera does, the values for aperture are purely arbitrary and are
not related to f-stops.

You must also specify the bl ur _sanpl es keyword followed by an integer value specifying the maximum number
of rays to use for each pixel. More rays give a smoother appearance but is slower. By default no focal blur is used, i.
e. the default aperture is 0 and the default number of samples is 0.

The center of the zone of sharpness is specified by the f ocal _poi nt vector. Objects close to this point are in
focus and those farther from that point are more blurred. The default value is f ocal _poi nt <0, 0, 0>.

Although bl ur _sanpl es specifies the maximum number of samples, there is an adaptive mechanism that stops
shooting rays when a certain degree of confidence has been reached. At that point, shooting more rays would not
result in a significant change. The confi dence and var i ance keywords are followed by float values to control
the adaptive function. The conf i dence value is used to determine when the samples seem to be close enough to
the correct color. The var i ance value specifies an acceptable tolerance on the variance of the samples taken so
far. In other words, the process of shooting sample rays is terminated when the estimated color value is very likely
(as controlled by the confidence probability) near the real color value.

Since the conf i dence is a probability its values can range from 0 to 1 (the default is 0.9, i. e. 90%). The value for
the var i ance should be in the range of the smallest displayable color difference (the default is 1/128).

Larger conf i dence values will lead to more samples, slower traces and better images. The same holds for smaller
vari ance thresholds.

4.4.4 Camera Ray Perturbation

The optional nor mal may be used to assign a normal pattern to the camera. For example:

caner af
| ocation Here
| ook_at There
nor mal { burps 0. 5}

}

All camera rays will be perturbed using this pattern. The image will be distorted as though you were looking through
bumpy glass or seeing a reflection off of a bumpy surface. This lets you create special effects. See the animated
scene camer a2. pov for an example. See "Normal" for information on normal patterns.

May 1999 POV-Ray 3.1g User Documentation Page 187

4.45 Camera ldentifiers

Camera identifiers may be declared to make scene files more readable and to parameterize scenes so that changing a
single declaration changes many values. You may declare several camera identifiers if you wish. This makes it easy
to quickly change cameras. An identifier is declared as follows.

CAMERA_DECLARATION:
#decl are IDENTIFIER = CAMERA |
#l ocal IDENTIFIER = CAMERA

Where IDENTIFIER is the name of the identifier up to 40 characters long and CAMERA is any valid camera
statement. See "#declare vs. #local" for information on identifier scope. Here is an example...

#decl are Long_Lens =
camera f{
| ocation -z*100
angle 3

#decl are Short _Lens =

camera f{

| ocation -z*50

angle 15

}
canera ({

Long Lens // edit this line to change | enses
| ook_at Here

}

4.5 Objects

Objects are the building blocks of your scene. There are a lot of different types of objects supported by POV-Ray.

In the sections which follow, we describe "Finite Solid Primitives”, "Finite Patch Primitives", "Infinite Solid
Primitives”, and "Light Sources". These primitive shapes may be combined into complex shapes using "Constructive
Solid Geometry" or CSG.

The basic syntax of an object is a keyword describing its type, some floats, vectors or other parameters which further
define its location and/or shape and some optional object modifiers such as texture, pigment, normal, finish, interior,
bounding, clipping or transformations. Specifically the syntax is:

OBJECT:
FINITE_SOLID_OBJECT | FINITE_PATCH_OBJECT |
INFINITE_SOLID_OBJECT | CSG_OBJECT | LIGHT SOURCE |
obj ect { OBJECT_IDENTIFIER [OBJECT_MODIFIERS..] }

FINITE_SOLID_OBJECT:
BLOB | BOX | CONE | CYLINDER | HEIGHT_FIELD | JULIA_FRACTAL |
LATHE | PRISM | SPHERE | SUPERELLIPSOID | SOR | TEXT | TORUS

FINITE_PATCH_OBJECT:
BICUBIC_PATCH | DISC | MESH | POLYGON | TRIANGLE | SMOOTH_TRIANGLE

INFINITE_SOLID_OBJECT:
PLANE | POLY | CUBIC | QUARTIC | QUADRIC

CSG_OBJECT:
UNION | INTERSECTION | DIFFERENCE | MERGE

Object identifiers may be declared to make scene files more readable and to parameterize scenes so that changing a
single declaration changes many values. An identifier is declared as follows.

May 1999 POV-Ray 3.1g User Documentation Page 188

OBJECT_DECLARATION:
#decl are IDENTIFIER = OBJECT |
#l ocal IDENTIFIER = OBJECT

Where IDENTIFIER is the name of the identifier up to 40 characters long and OBJECT is any valid object. Note
that to invoke an object identifier, you wrap it inan obj ect {. . . } statement. You use the obj ect statement
regardless of what type of object it originally was. Although early versions of POV-Ray required this obj ect
wrapper all of the time, now it is only used with OBJECT_IDENTIFIERS.

Object modifiers are covered in detail later. However here is a brief overview.

The texture describes the surface properties of the object. Complete details are in "Textures". Textures are
combinations of pigments, normals, and finishes. In the section "Pigment” you'll learn how to specify the color or
pattern of colors inherent in the. In "Normal™ we describe a method of simulating various patterns of bumps, dents,
ripples or waves by modifying the surface normal vector. The section on "Finish™ describes the reflective properties
of the surface. The "Interior" is a new feature in POV-Ray 3.1. It contains information about the interior of the
object which was formerly contained in the finish and halo parts of a texture. Interior items are no longer part of the
texture. Instead, they attach directly to the objects. The halo feature has been discontinued and replaced with a new
feature called "Media" which replaces both halo and atmosphere.

Bounding shapes are finite, invisible shapes which wrap around complex, slow rendering shapes in order to speed up
rendering time. Clipping shapes are used to cut away parts of shapes to expose a hollow interior. Transformations
tell the ray-tracer how to move, size or rotate the shape and/or the texture in the scene.

45.1 Finite Solid Primitives

There are thirteen different solid finite primitive shapes: blob, box, cone, cylinder, height field, Julia fractal, lathe,
prisms, sphere, superellipsoid, surface of revolution, text object and torus. These have a well-defined inside and can
be used in CSG (see section "Constructive Solid Geometry"). They are finite and respond to automatic bounding.
You may specify an interior for these objects.

45.1.1 Blob

Blobs are an interesting and flexible object type. Mathematically they are iso-surfaces of scalar fields, i.e. their
surface is defined by the strength of the field in each point. If this strength is equal to a threshold value you're on the
surface otherwise you're not.

Picture each blob component as an object floating in space. This object is filled with a field that has its maximum at
the center of the object and drops off to zero at the object's surface. The field strength of all those components are
added together to form the field of the blob. Now POV-Ray looks for points where this field has a given value, the
threshold value. All these points form the surface of the blob object. Points with a greater field value than the
threshold value are considered to be inside while points with a smaller field value are outside.

There's another, simpler way of looking at blobs. They can be seen as a union of flexible components that attract or
repel each other to form a blobby organic looking shape. The components' surfaces actually stretch out smoothly and
connect as if they were made of honey or something like that.

The syntax for bl ob is defined as follows:
BLOB:
bl ob { BLOB_ITEM... [BLOB_MODIFIERS...]}

BLOB_ITEM:
spher e{ <Center>, Radius, [strength] Strength [COMPONENT_MODIFIER...] } |
cyl i nder { <End1>, <End2>, Radius, [strength] Strength [COMPONENT_MODIFIER...] } |
conponent Strength, Radius, <Center> |

May 1999 POV-Ray 3.1g User Documentation Page 189

t hr eshol d Amount

COMPONENT_MODIFIER:
TEXTURE | PIGMENT | NORMAL | FINISH | TRANSFORMATION

BLOB_MODIFIER:
hi er ar chy [Boolean] |
st ur m[Boolean] |
OBJECT_MODIFIER

The t hr eshol d keyword is followed by a float value which determines the total field strength value that POV-
Ray is looking for. The default value if none is specified ist hr eshol d 1. 0. By following the ray out into space
and looking at how each blob component affects the ray, POV-Ray will find the points in space where the field
strength is equal to the threshold value. The following list shows some things you should know about the threshold
value.

1) The threshold value must be positive.

2) A component disappears if the threshold value is greater than its strength.

3) As the threshold value gets larger, the surface you see gets closer to the centers of the components.
4) As the threshold value gets smaller, the surface you see gets closer to the surface of the components.

Cylindrical components are specified by a cyl i nder statement. The center of the end-caps of the cylinder is
defined by the vectors <End1> and <End2>. Next is the float value of the Radius followed by the float Strength.
These vectors and floats are required and should be separated by commas. The keyword st r engt h may optionally
precede the strength value. The cylinder has hemispherical caps at each end.

Spherical components are specified by a spher e statement. The location is defined by the vector <Center>. Next
is the float value of the Radius followed by the float Strength. These vector and float values are required and should
be separated by commas. The keyword st r engt h may optionally precede the strength value.

You usually will apply a single texture to the entire blob object, and you typically use transformations to change its
size, location, and orientation. However both the cyl i nder and spher e statements may have individual texture,
pigment, normal, finish, and transformations applied to them. You may not apply separate i nt eri or statements
to the components but you may specify one for the entire blob. Note that by unevenly scaling a spherical component
you can create ellipsoidal components. The tutorial section on "Blob Object" illustrates individually textured blob
components and many other blob examples.

The conmponent keyword is an obsolete method for specifying a spherical component and is only used for
compatibility with earlier POV-Ray versions. It may not have textures or transformations individually applied to it.

The st r engt h parameter of either type of blob component is a float value specifying the field strength at the
center of the object. The strength may be positive or negative. A positive value will make that component attract
other components while a negative value will make it repel other components. Components in different, separate
blob shapes do not affect each other.

You should keep the following things in mind.

1) The strength value may be positive or negative. Zero is a bad value, as the net result is that no field was added ---
you might just as well have not used this component.

2) If strength is positive, then POV-Ray will add the component's field to the space around the center of the
component. If this adds enough field strength to be greater than the threshold value you will see a surface.

3) If the strength value is negative, then POV-Ray will subtract the component's field from the space around the
center of the component. This will only do something if there happen to be positive components nearby. What
happens is that the surface around any nearby positive components will be dented away from the center of the
negative component.

After all components and the optional t hr eshol d value have been specified you may specify zero or more blob
modifiers. A blob modifier is any regular object modifier or the hi er ar chy or st ur mkeywords.

May 1999 POV-Ray 3.1g User Documentation Page 190

The components of each blob object are internally bounded by a spherical bounding hierarchy to speed up blob
intersection tests and other operations. By using the optional keyword hi er ar chy followed by an optional boolean
float value to turn it off or on. By default it is on.

The calculations for blobs must be very accurate. If this shape renders improperly you may add the keyword st ur m
followed by an optional boolean float value to turn it off or on POV-Ray's slower-yet-more-accurate Sturmian root
solver. By default it is off.

An example of a three component blob is:

bl ob {

threshold 0.6

sphere { <.75, 0, 0> 1, 1}

sphere { <-.375, .64952, 0>, 1, 1}
sphere { <-.375, -.64952, 0>, 1, 1}
scale 2

}

If you have a single blob component then the surface you see will just look like the object used, i.e. a sphere or a
cylinder, with the surface being somewhere inside the surface specified for the component. The exact surface
location can be determined from the blob equation listed below (you will probably never need to know this, blobs
are more for visual appeal than for exact modeling).

For the more mathematically minded, here's the formula used internally by POV-Ray to create blobs. You don't need
to understand this to use blobs. The density of the blob field of a single component is:

distance]L

density = strength *| 1 - (
radius

where distance is the distance of a given point from the spherical blob's center or cylinder blob's axis. This formula
has the nice property that it is exactly equal to the strength parameter at the center of the component and drops off to
exactly 0 at a distance from the center of the component that is equal to the radius value. The density formula for
more than one blob component is just the sum of the individual component densities.

45.1.2 Box

A simple box can be defined by listing two corners of the box using the following syntax for a box statement:

BOX:
box { <Corner_1>, <Corner_2> [OBJECT_MODIFIERS...]}

May 1999 POV-Ray 3.1g User Documentation Page 191

corner 2

corner 1

The geometry of a box.
Where <Corner_1> and <Corner_2> are vectors defining the X, y, z coordinates of the opposite corners of the box.

Note that all boxes are defined with their faces parallel to the coordinate axes. They may later be rotated to any
orientation using the r ot at e keyword.

Boxes are calculated efficiently and make good bounding shapes (if manually bounding seems to be necessary).

45.1.3 Cone

The cone statement creates a finite length cone or a frustum (a cone with the point cut off). The syntax is:

CONE:
cone { <Base Point>, Base Radius, <Cap_Point>, Cap_Radius
[open][OBJECT_MODIFIERS...]

cap point
cap radius

base radius
base point

The geometry of a cone.

Where <Base_Point> and < Cap_Point> are vectors defining the X, y, z coordinates of the center of the cone's base
and cap and Base_Radius and Cap_Radius are float values for the corresponding radii.

May 1999 POV-Ray 3.1g User Documentation Page 192

Normally the ends of a cone are closed by flat planes which are parallel to each other and perpendicular to the length
of the cone. Adding the optional keyword open after Cap_Radius will remove the end caps and results in a tapered
hollow tube like a megaphone or funnel.

45.1.4 Cylinder

The cyl i nder statement creates finite length cylinder with parallel end caps The syntax is:

CYLINDER:
cyl i nder{ <Base_Point>, <Cap_Point>, Radius
[open][OBJECT_MODIFIERS...]

/} cap point

- radius

&E/
W

I
- L -_ |-base point
I

The geometry of a cylinder.

Where <Base_Point> and <Cap_Point> are vectors defining the x, y, z coordinates of the cylinder's base and cap
and Radius is a float value for the radius.

Normally the ends of a cylinder are closed by flat planes which are parallel to each other and perpendicular to the
length of the cylinder. Adding the optional keyword open after the radius will remove the end caps and results in a
hollow tube.

4.5.1.5 Height Field

Height fields are fast, efficient objects that are generally used to create mountains or other raised surfaces out of
hundreds of triangles in a mesh. The hei ght _fi el d statement syntax is:

HEIGHT_FIELD:
hei ght _fi el d{ HF_TYPE "filename" [HF_MODIFIER...] }
HF_TYPE:
gif | tga | pot | png | pgm | ppm | sys
HF_MODIFIER:

hi er ar chy [Boolean] |
snoot h [Boolean] |
wat er _| evel Level |
OBJECT_MODIFIER

May 1999 POV-Ray 3.1g User Documentation Page 193

A height field is essentially a one unit wide by one unit long square with a mountainous surface on top. The height
of the mountain at each point is taken from the color number or palette index of the pixels in a graphic image file.
The maximum height is one, which corresponds to the maximum possible color or palette index value in the image
file.

T

The size and orientation of an un-scaled height field.

The mesh of triangles corresponds directly to the pixels in the image file. Each square formed by four neighboring
pixels is divided into two triangles. An image with a resolution of N*M pixels has (N-1)*(M-1) squares that are
divided into 2*(N-1)*(M-1) triangles.

color height

1.00
0.75
0.50
0.25
0.00

VAR

Four pixels of an image and the resulting heights and triangles in the height field.
The resolution of the height field is influenced by two factors: the resolution of the image and the resolution of the

color/index values. The size of the image determines the resolution in the x- and z-direction. A larger image uses
more triangles and looks smoother. The resolution of the color/index value determines the resolution along the y-

May 1999 POV-Ray 3.1g User Documentation Page 194

axis. A height field made from an 8 bit image can have 256 different height levels while one made from a 16 bit
image can have up to 65536 different height levels. Thus the second height field will look much smoother in the y-
direction if the height field is created appropriately.

The size/resolution of the image does not affect the size of the height field. The un-scaled height field size will
always be 1 by 1 by 1. Higher resolution image files will create smaller triangles, not larger height fields.

There are six or possibly seven types of files which can define a height field. The image file type used to create a
height field is specified by one of the keywords gi f , t ga, pot, png, pgm ppm and possibly sys which is a
system specific (e. g. Windows BMP or Macintosh Pict) format file. The GIF, PNG, PGM, and possibly SYS format
files are the only ones that can be created using a standard paint program. Though there are paint programs for
creating TGA image files they won't be of much use for creating the special 16 bit TGA files used by POV-Ray (see
below and "HF_Gray_16" for more details).

In an image file like GIF that uses a color palette the color number is the palette index at a given pixel. Use a paint
program to look at the palette of a GIF image. The first color is palette index zero, the second is index one, the third
is index two and so on. The last palette entry is index 255. Portions of the image that use low palette entries will
result in lower parts of the height field. Portions of the image that use higher palette entries will result in higher parts
of the height field.

Height fields created from GIF files can only have 256 different height levels because the maximum number of
colors in a GIF file is 256.

The color of the palette entry does not affect the height of the pixel. Color entry 0 could be red, blue, black or orange
but the height of any pixel that uses color entry 0 will always be 0. Color entry 255 could be indigo, hot pink, white
or sky blue but the height of any pixel that uses color entry 255 will always be 1.

You can create height field GIF images with a paint program or a fractal program like Fr act i nt . You can usually
get Fracti nt from most of the same sources as POV-Ray.

A POT file is essentially a GIF file with a 16 bit palette. The maximum number of colors in a POT file is 65536.
This means a POT height field can have up to 65536 possible height values. This makes it possible to have much
smoother height fields. Note that the maximum height of the field is still 1 even though more intermediate values are
possible. At the time of this writing the only program that created POT files was a freeware MS-Dos/Windows
program called Fr act i nt . POT files generated with this fractal program create fantastic landscapes.

The TGA and PPM file formats may be used as a storage device for 16 bit numbers rather than an image file. These
formats use the red and green bytes of each pixel to store the high and low bytes of a height value. These files are as
smooth as POT files but they must be generated with special custom-made programs. Several programs can create
TGA heightfields in the format POV uses, such as Gforge and Terrain Maker.

PNG format heightfields are usually stored in the form of a grayscale image with black corresponding to lower and
white to higher parts of the height field. Because PNG files can store up to 16 bits in grayscale images they will be
as smooth as TGA and PPM images. Since they are grayscale images you will be able to view them with a regular
image viewer. gf or ge can create 16-bit heightfields in PNG format. Color PNG images will be used in the same
way as TGA and PPM images.

SYS format is a platform specific file format. See your platform specific documentation for details.
In addition to all the usual object modifiers, there are three additional height field modifiers available.

The optional wat er _| evel parameter may be added after the file name. It consists of the keyword

wat er _| evel followed by a float value telling the program to ignore parts of the height field below that value.
The default value is zero and legal values are between zero and one. For example wat er _| evel 0. 5 tells POV-
Ray to only render the top half of the height field. The other half is below the water and couldn't be seen anyway.
Using wat er _| evel renders faster than cutting off the lower part using CSG or clipping. This term comes from
the popular use of height fields to render landscapes. A height field would be used to create islands and another

May 1999 POV-Ray 3.1g User Documentation Page 195

shape would be used to simulate water around the islands. A large portion of the height field would be obscured by
the water so the wat er _| evel parameter was introduced to allow the ray-tracer to ignore the unseen parts of the
height field. wat er _| evel isalso used to cut away unwanted lower values in a height field. For example if you
have an image of a fractal on a solid colored background, where the background color is palette entry 0, you can
remove the background in the height field by specifying, wat er _| evel 0. 001.

Normally height fields have a rough, jagged look because they are made of lots of flat triangles. Adding the keyword
snoot h causes POV-Ray to modify the surface normal vectors of the triangles in such a way that the lighting and
shading of the triangles will give a smooth look. This may allow you to use a lower resolution file for your height
field than would otherwise be needed. However, smooth triangles will take longer to render. The default value is
off. You may optionally use a boolean value such as snoot h on or snoot h of f.

In order to speed up the intersection tests an one-level bounding hierarchy is available. By default it is always used
but it can be switched off using hi er ar chy of f to improve the rendering speed for small height fields (i.e. low
resolution images). You may optionally use a boolean value such as hi er ar chy on or hi erarchy of f.

45.1.6 Julia Fractal

A julia fractal object is a 3-D slice of a 4-D object created by generalizing the process used to create the classic Julia
sets. You can make a wide variety of strange objects using the j ul i a_f r act al statement including some that
look like bizarre blobs of twisted taffy. The j ul i a_f ract al syntax is:

JULIA_FRACTAL:
julia_fractal { <4D_Julia_Parameter> [JF_ITEM...] [OBJECT_MODIFIER...] }

JF_ITEM:
ALGEBRA_TYPE | FUNCTION_TYPE |
max_iterationCount | precisionAmt |
sl i ce <4D_Normal>, Distance

ALGEBRA_TYPE:
qguat erni on | hyper conpl ex

FUNCTION_TYPE:
sqr | cube | exp | reciprocal | sin | asin |
sinh | asinh | cos | acos | cosh | acosh |
tan | atan | tanh | atanh | log | pw (X_Val, Y_Val)

The required 4-D vector <4D_Julia_Parameter> is the classic Julia parameter p in the iterated formula f(h) + p.

The julia fractal object is calculated by using an algorithm that determines whether an arbitrary point h(0) in 4-D
space is inside or outside the object. The algorithm requires generating the sequence of vectors h(0), h(1), ... by
iterating the formula h(n+1) = f(h(n)) + p (n =0, 1, ..., max_iteration-1) where p is the fixed 4-D vector parameter
of the julia fractal and f() is one of the functions sqr, cube, ... specified by the presence of the corresponding
keyword. The point h(0) that begins the sequence is considered inside the julia fractal object if none of the vectors in
the sequence escapes a hypersphere of radius 4 about the origin before the iteration number reaches the integer
max_iteration value. As you increase max_i t er at i on, some points escape that did not previously escape,
forming the julia fractal. Depending on the <4D_Julia_Parameter>, the julia fractal object is not necessarily
connected; it may be scattered fractal dust. Using a low max_i t er at i on can fuse together the dust to make a
solid object. A high max_i t er ati on is more accurate but slows rendering. Even though it is not accurate, the
solid shapes you get with a low, max_i t er at i on value can be quite interesting. If none is specified, the default
ismax_iteration 20.

Since the mathematical object described by this algorithm is four-dimensional and POV-Ray renders three
dimensional objects, there must be a way to reduce the number of dimensions of the object from four dimensions to
three. This is accomplished by intersecting the 4-D fractal with a 3-D "plane” defined by the sl i ce modifier and
then projecting the intersection to 3-D space. The keyword is followed by 4D vector and a float separated by a

May 1999 POV-Ray 3.1g User Documentation Page 196

comma. The slice plane is the 3-D space that is perpendicular to <4D_Normal> and is Distance units from the
origin. Zero length <4D_Normal> vectors or a <4D_Normal> vector with a zero fourth component are illegal. If
none is specified, the defaultis sl i ce <0, 0, 0, 1>, 0.

You can get a good feel for the four dimensional nature of a julia fractal by using POV-Ray's animation feature to
vary a slice's Distance parameter. You can make the julia fractal appear from nothing, grow, then shrink to nothing
as Distancechanges, much as the cross section of a 3-D object changes as it passes through a plane.

The pr eci si on parameter is a tolerance used in the determination of whether points are inside or outside the
fractal object. Larger values give more accurate results but slower rendering. Use as low a value as you can without
visibly degrading the fractal object's appearance but note values less than 1.0 are clipped at 1.0. The default if none
is specified is pr eci si on 20.

The presence of the keywords quat er ni on or hyper conpl ex determine which 4-D algebra is used to calculate
the fractal. The default is quat er ni on. Both are 4-D generalizations of the complex numbers but neither satisfies
all the field properties (all the properties of real and complex numbers that many of us slept through in high school).
Quaternions have non-commutative multiplication and hypercomplex numbers can fail to have a multiplicative
inverse for some non-zero elements (it has been proved that you cannot successfully generalize complex numbers to
four dimensions with all the field properties intact, so something has to break). Both of these algebras were
discovered in the 19th century. Of the two, the quaternions are much better known, but one can argue that
hypercomplex numbers are more useful for our purposes, since complex valued functions such as sin, cos, etc. can
be generalized to work for hypercomplex numbers in a uniform way.

For the mathematically curious, the algebraic properties of these two algebras can be derived from the multiplication
properties of the unit basis vectors 1 = <1,0,0,0>, i=<0,1,0,0>, j=<0,0,1,0> and k=< 0,0,0,1>. In both algebras 1 x =
x 1 =xfor any x (1 is the multiplicative identity). The basis vectors 1 and i behave exactly like the familiar complex
numbers 1 and i in both algebras.

Quaternion basis vector multiplication rules:

i = k ik =i Ki =]
i = -k Kj = -i ik = -]
i1 =j] =Kk = -1 |ijk = -1

Hypercomplex basis vector multiplication rules:

] =k ik = - Ki = -j
i =k Kj = - K = -
i1 =j] =Kkk =-1 |ijk=1

A distance estimation calculation is used with the quaternion calculations to speed them up. The proof that this
distance estimation formula works does not generalize from two to four dimensions but the formula seems to work
well anyway, the absence of proof notwithstanding!

The presence of one of the function keywords sqr , cube, etc. determines which function is used for f(h) in the
iteration formula h(n+1) = f(h(n)) + p. The default is sqr . Most of the function keywords work only if the

hyper conpl ex keyword is present. Only sqr and cube work with quat er ni on. The functions are all familiar
complex functions generalized to four dimensions.

Function Keyword Maps 4-D value h to:
sqr h*h

cube h*h*h

exp e raised to the power h
reci procal 1/h

sin sine of h

asin arcsine of h

May 1999 POV-Ray 3.1g User Documentation Page 197

si nh hyperbolic sine of h

asi nh inverse hyperbolic sine of h
cos cosine of h

acos arccosine of h

cosh hyperbolic cos of h

acosh inverse hyperbolic cosine of h
tan tangent of h

at an arctangent of h

t anh hyperbolic tangent of h

at anh inverse hyperbolic tangent of h
| og natural logarithm of h

pwr (X, Y) h raised to the complex power x+iy

A simple example of a julia fractal object is:

julia fractal {
<-0.083,0.0,-0.83,-0. 025>
guat er ni on
sqr
max_iteration 8
precision 15

}

The first renderings of julia fractals using quaternions were done by Alan Norton and later by John Hart in the '80's.
This new POV-Ray implementation follows Fr act i nt in pushing beyond what is known in the literature by using
hypercomplex numbers and by generalizing the iterating formula to use a variety of transcendental functions instead
of just the classic Mandelbrot z* + ¢ formula. With an extra two dimensions and eighteen functions to work with,
intrepid explorers should be able to locate some new fractal beasts in hyperspace, so have at it!

45.1.7 Lathe

The | at he is an object generated from rotating a two-dimensional curve about an axis. This curve is defined by a
set of points which are connected by linear, quadratic, cubic or bezier spline curves. The syntax is:

LATHE:
| at he {

[SPLINE_TYPE] Number_Of Points, <Point_1> <Point_2>... <Point_n>
[LATHE_MODIFIER...]
}

SPLINE_TYPE:
linear_spline | quadratic_spline | cubic_spline | bezier_spline

LATHE_MODIFIER:
sturm | OBJECT_MODIFIER

The first item is a keyword specifying the type of spline. The default if none is specified is| i near _spl i ne.
The required integer value Number_Of_Points specifies how many two-dimensional points are used to define the
curve. The points follow and are specified by 2-D vectors. The curve is not automatically closed, i.e. the first and
last points are not automatically connected. You will have to do this by your own if you want a closed curve. The
curve thus defined is rotated about the y-axis to form the lathe object which is centered at the origin.

The following examples creates a simple lathe object that looks like a thick cylinder, i.e. a cylinder with a thick wall:

| at he {
i near_spline
5,
<2, 0>, <3, 0> <3, 5> <2, 5> <2, 0>
pi gment {Red}

May 1999 POV-Ray 3.1g User Documentation Page 198

}

The cylinder has an inner radius of 2 and an outer radius of 3, giving a wall width of 1. It's height is 5 and it's located
at the origin pointing up, i.e. the rotation axis is the y-axis. Note that the first and last point are equal to get a closed
curve.

The splines that are used by the lathe and prism objects are a little bit difficult to understand. The basic concept of
splines is to draw a curve through a given set of points in a determined way. The default | i near _spl i ne is the
simplest spline because it's nothing more than connecting consecutive points with a line. This means that the curve
that is drawn between two points only depends on those two points. No additional information is taken into account.
The other splines are different in that they do take other points into account when connecting two points. This
creates a smooth curve and, in the case of the cubic spline, produces smoother transitions at each point.

The quadr at i c_spl i ne keyword creates splines that are made of quadratic curves. Each of them connects two
consecutive points. Since those two points (call them second and third point) are not sufficient to describe a
quadratic curve the predecessor of the second point is taken into account when the curve is drawn. Mathematically
the relationship (their location on the 2-D plane) between the first and second point determines the slope of the curve
at the second point. The slope of the curve at the third point is out of control. Thus quadratic splines look much
smoother than linear splines but the transitions at each point are generally not smooth because the slopes on both
sides of the point are different.

The cubi c_spl i ne keyword creates splines overcome the transition problem of quadratic splines because they
also take the fourth point into account when drawing the curve between the second and third point. The slope at the
fourth point is under control now and allows a smooth transition at each point. Thus cubic splines produce the most
flexible and smooth curves.

The bezi er _spl i ne is an alternate kind of cubic spline. Points 1 and 4 specify the end points of a segment and
points 2 and 3 are control points which specify the slope at the endpoints. Points 2 and 3 do not actually lie on the
spline. They adjust the slope of the spline. If you draw an imaginary line between point 1 and 2, it represents the
slope at point 1. It is a line tangent to the curve at point 1. The greater the distance between 1 and 2, the flatter the
curve. With a short tangent the spline can bend more. The same holds true for control point 3 and endpoint 4. If
you want the spline to be smooth between segments, point 3 and 4 on one segment and point 1 and 2 on the next
segment must form a straight line and point 4 of one segment must be the same as point one on the next segment.

You should note that the number of spline segments, i. e. curves between two points, depends on the spline type
used. For linear splines you get n-1 segments connecting the points P[i], i=1,...,n. A quadratic spline gives you n-2
segments because the last point is only used for determining the slope as explained above (thus you'll need at least
three points to define a quadratic spline). The same holds for cubic splines where you get n-3 segments with the first
and last point used only for slope calculations (thus needing at least four points). The bezier spline requires 4 points
per segment.

If you want to get a closed quadratic and cubic spline with smooth transitions at the end points you have to make
sure that in the cubic case P[n-1] = P[2] (to get a closed curve), P[n] = P[3] and P[n-2] = P[1] (to smooth the
transition). In the quadratic case P[n-1] = P[1] (to close the curve) and P[n] = P[2].

The st ur mkeyword can be used to specify that the slower but more accurate Sturmian root solver should be used.
Use it with the quadratic spline lathe if the shape does not render properly. Since a quadratic polynomial has to be
solved for the linear spline lathe the Sturmian root solver is not needed. In case of cubic or bezier splines, the
Sturmian root solver is always used because a 6th order polynomial has to be solved.

45.1.8 Prism

The pri smis an object generated specifying one or more two-dimensional, closed curves in the x-z plane and
sweeping them along y axis. These curves are defined by a set of points which are connected by linear, quadratic,
cubic or bezier splines.

The syntax for the prism is:

May 1999 POV-Ray 3.1g User Documentation Page 199

PRISM:
pri sm { [PRISM_ITEMS...] Height_1, Height 2, Number_Of Points,
<Point_1>, <Point 2>, ... <Point_n>
[open]
[PRISM_MODIFIERS...]
}

PRISM_ITEM:
linear_spline | quadratic_spline | cubic_spline | bezier_spline |
i near _sweep | conic_sweep

PRISM_MODIFIER:
sturm | OBJECT_MODIFIER

The first items specify the spline type and sweep type. The defaults if none is specified is | i near _spl i ne and
coni c_sweep. This is followed by two float values Height_1 and Height_2 which are the y coordinates of the top
and bottom of the prism. This is followed by a float value specifying the number of 2-D points you will use to define
the prism. (This includes all control points needed for quadratic, cubic and bezier splines). This is followed by the
specified number of 2-D vectors which define the shape in the x-z plane.

The interpretation of the points depends on the spline type. The prism object allows you to use any number of sub-
prisms inside one prism statement (they are of the same spline and sweep type). Wherever an even number of sub-
prisms overlaps a hole appears. Note you need not have multiple sub-prisms and they need not overlap as these
examples do.

Inthe |l i near _spl i ne the first point specified is the start of the first sub-prism. The following points are
connected by straight lines. 1f you specify a value identical to the first point, this closes the sub-prism and next point
starts a new one. When you specify the value of that sub-prism's start, then it is closed. Each of the sub-prisms has
to be closed by repeating the first point of a sub-prism at the end of the sub-prism's point sequence. In this example,
there are two rectangular sub-prisms nested inside each other to create a frame.

prism {

i near_spline

o0, 1, 10,

<0, 0>, <6,0>, <6,8> <0,8> <0,0> //outer rim
<1,1>, <5,1> <5/7> <1,7> <1,1> //linner rim

}

The last sub-prism of a linear spline prism is automatically closed - just like the last sub-polygon in the polygon
statement - if the first and last point of the sub-polygon's point sequence are not the same. This make it very easy to
convert between polygons and prisms. Quadratic, cubic and bezier splines are never automatically closed.

Inthe quadr ati c_spl i ne, each sub-prism needs an additional control point at the beginning of each sub-prisms'
point sequence to determine the slope at the start of the curve. The first point specified is the control point which is
not actually part of the spline. The second point is the start of the spline. The sub-prism ends when this second
point is duplicated. The next point is the control point of the next sub-prism. The point after that is the first point of
the second sub-prism. Here is an example:

prism{
quadratic_spline
0, 1, 12,
<1,-1>, <0,0>, <6,0> <6,8> <0,8> <0,0> //outer rim
//Control is <1,-1> and <0,0> is first & last point
<2,0>, <1,1>, <5,1> <5,7> <1,7> <1,1> //inner rim
/1 Control is <2,0> and <1,1> is first & |l ast point
}

In the cubi c_spl i ne, each sub-prism needs two additional control points -- one at the beginning of each sub-
prisms' point sequence to determine the slope at the start of the curve and one at the end. The first point specified is
the control point which is not actually part of the spline. The second point is the start of the spline. The sub-prism

May 1999 POV-Ray 3.1g User Documentation Page 200

ends when this second point is duplicated. The next point is the control point of the end of the first sub-prism. Next
is the beginning control point of the next sub-prism. The point after that is the first point of the second sub-prism.
Here is an example:

prism{

cubi c_spline

0, 1, 14,

<1,-1>, <0,0>, <6,0> <6,8> <0,8> <0,0> <-1,1> //outer rim
/I First control is <1,-1> and <0,0> is first & last point

/1 Last control of first spline is <-1,1>

<2,0>, <1,1> <5,1> <5,7> <1,7> <1,1> <0,2>//inner rim

/I First control is <2,0> and <1,1> is first & last point

/1 Last control of first spline is <0, 2>

}

The bezi er _spl i ne is an alternate kind of cubic spline. Points 1 and 4 specify the end points of a segment and
points 2 and 3 are control points which specify the slope at the endpoints. Points 2 and 3 do not actually lie on the
spline. They adjust the slope of the spline. If you draw an imaginary line between point 1 and 2, it represents the
slope at point 1. It is a line tangent to the curve at point 1. The greater the distance between 1 and 2, the flatter the
curve. With a short tangent the spline can bend more. The same holds true for control point 3 and endpoint 4. If
you want the spline to be smooth between segments, point 3 and 4 on one segment and point 1 and 2 on the next
segment must form a straight line and point 4 of one segment must be the same as point one on the next segment.

By default linear sweeping is used to create the prism, i.e. the prism's walls are perpendicular to the x-z-plane (the
size of the curve does not change during the sweep). You can also use coni ¢c_sweep that leads to a prism with
cone-like walls by scaling the curve down during the sweep.

Like cylinders the prism is normally closed. You can remove the caps on the prism by using the open keyword. If
you do so you shouldn't use it with CSG because the results may get wrong.

For an explanation of the spline concept read the description of the "Lathe" object. Also see the tutorials on "Lathe
Object" and "Prism Object".

The st ur mkeyword specifies the slower but more accurate Sturmian root solver which may be used with the cubic
or bezier spline prisms if the shape does not render properly. The linear and quadratic spline prisms do not need the
Sturmian root solver.

45.1.9 Sphere

The syntax of the spher e object is:

SPHERE:
sphere { <Center>, Radius [OBJECT_MODIFIERS...] }

May 1999 POV-Ray 3.1g User Documentation Page 201

radius
center

The geometry of a sphere.

Where <Center> is a vector specifying the X, y, z coordinates of the center of the sphere and Radius is a float value
specifying the radius. Spheres may be scaled unevenly giving an ellipsoid shape.

Because spheres are highly optimized they make good bounding shapes (if manual bounding seems to be necessary).

4.5.1.10 Superquadric Ellipsoid

The super el | i psoi d object creates a shape known as a superquadric ellipsoid object. It is an extension of the
quadric ellipsoid. It can be used to create boxes and cylinders with round edges and other interesting shapes.
Mathematically it is given by the equation:

fey,2)=(15+ (:LIZI@ ~1=0

The values of e and n, called the east-west and north-south exponent, determine the shape of the superquadric
ellipsoid. Both have to be greater than zero. The sphere is givenbye =1and n = 1.

The syntax of the superquadric ellipsoid is:

SUPERELLIPSOID:
super el |'i psoi d{ <Value_E, Value_N> [OBJECT_MODIFIERS...] }

The 2-D vector specifies the e and n values in the equation above. The object sits at the origin and occupies a space
about the size ofabox{<-1, -1, -1>,<1, 1, 1>}.

Two useful objects are the rounded box and the rounded cylinder. These are declared in the following way.

#decl are Rounded_Box = superellipsoid { <Round, Round> }
#decl are Rounded_Cylinder = superellipsoid { <1, Round> }

The roundedness value Round determines the roundedness of the edges and has to be greater than zero and smaller
than one. The smaller you choose the values, the smaller and sharper the edges will get.

Very small values of e and n might cause problems with the root solver (the Sturmian root solver cannot be used).

May 1999 POV-Ray 3.1g User Documentation Page 202

45.1.11 Surface of Revolution

The sor object is a surface of revolution generated by rotating the graph of a function about the y-axis. This
function describes the dependence of the radius from the position on the rotation axis. The syntax is:

SOR:
sor { Number_Of Points,
<Point_1>, <Point 2>, ... <Point_n>
[open]
[SOR_MODIFIERS...]
}

SOR_MODIFIER:
sturm | OBJECT_MODIFIER

The float value Number_Of_Points specifies the number of 2-D vectors which follow. The points <Point_1>
through <Point_n> are two-dimensional vectors consisting of the radius and the corresponding height, i.e. the
position on the rotation axis. These points are smoothly connected (the curve is passing through the specified points)
and rotated about the y-axis to form the SOR object. The first and last points are only used to determine the slopes of
the function at the start and end point. They do not actually lie on the curve. The function used for the SOR object is
similar to the splines used for the lathe object. The difference is that the SOR object is less flexible because it
underlies the restrictions of any mathematical function, i.e. to any given point y on the rotation axis belongs at most
one function value, i.e. one radius value. You can't rotate closed curves with the SOR object.

The optional keyword open allows you to remove the caps on the SOR object. If you do this you shouldn't use it
with CSG anymore because the results may be wrong.

The SOR object is useful for creating bottles, vases, and things like that. A simple vase could look like this:
#decl are Vase = sor {

7,

<0. 000000, 0. 000000>
<0. 118143, 0.000000>
<0. 620253, 0.540084>
<0. 210970, 0.827004>
<0. 194093, 0.962025>
<0. 286920, 1.000000>
<0. 468354, 1.033755>
open

}

One might ask why there is any need for a SOR object if there is already a lathe object which is much more flexible.
The reason is quite simple. The intersection test with a SOR object involves solving a cubic polynomial while the
test with a lathe object requires to solve of a 6th order polynomial (you need a cubic spline for the same
smoothness). Since most SOR and lathe objects will have several segments this will make a great difference in
speed. The roots of the 3rd order polynomial will also be more accurate and easier to find.

The st ur mkeyword may be added to specify the slower but more accurate Sturmian root solver. It may be used
with the surface of revolution object if the shape does not render properly.

The following explanations are for the mathematically interested reader who wants to know how the surface of
revolution is calculated. Though it is not necessary to read on it might help in understanding the SOR object.

The function that is rotated about the y-axis to get the final SOR object is given by

rP=f(h=A-K+B-h+C-h+D

May 1999 POV-Ray 3.1g User Documentation Page 203

with radius r and height h. Since this is a cubic function in h it has enough flexibility to allow smooth curves.

The curve itself is defined by a set of n points P(i), i=0...n-1, which are interpolated using one function for every
segment of the curve. A segment j, j=1...n-3, goes from point P(j) to point P(j+1) and uses points P(j-1) and P(j+2)
to determine the slopes at the endpoints. If there are n points we will have n-3 segments. This means that we need at
least four points to get a proper curve.

The coefficients A(j), B(j), C(j) and D(j) are calculated for every segment using the equation
b=M- x with:

r(j)

r(j +l)2

p=| 27G) G+ -r(G-1)
h(j+1)-h(j-1)

2-r(j+1)-(r(j+2)-r()))

W(j+2)-h(j) |

h(j) WGy G)

y—| AU+ kG AGi)
3-0()Y 2-h()) L0
3-h(j+1) 2-A(j+1) 1 0

AT
B(/)
C(j)
_D(j)]

where r(j) is the radius and h(j) is the height of point P(j).

The figure below shows the configuration of the points P(i), the location of segment j, and the curve that is defined
by this segment.

May 1999 POV-Ray 3.1g User Documentation Page 204

8.0 XP.

_.X
6.0 | w:.f:r2
ﬁh“' Pill
= /
= N
3 4.0 / P,
T Segment | I
|
_LXP
2.0 %"
~
\\\
xPs
P,
-4.0 -2.0 0.0 2.0 4.0
Radius r

Segment j of n-3 segments in a point configuration of n points.

The points describe the curve of a surface of revolution."

45.1.12 Text

At ext object creates 3-D text as an extruded block letter. Currently only TrueType fonts are supported but the
syntax allows for other font types to be added in the future. The syntax is:

TEXT_OBECT:
text { ttf "fontname.ttf" "String_of Text" Thickness, <Offset>[OBJECT _MODIFIERS...] }

Where f ont nane. t t f is the name of the TrueType font file. It is a quoted string literal or string expression. The
string expression which follows is the actual text of the string object. It too may be a quoted string literal or string
expression. See section "Strings" for more on string expressions.

The text will start with the origin at the lower left, front of the first character and will extend in the +x-direction. The
baseline of the text follows the x-axis and decenders drop into the -y-direction. The front of the character sits in the
x-y-plane and the text is extruded in the +z-direction. The front-to-back thickness is specified by the required value
Thickness.

Characters are generally sized so that 1 unit of vertical spacing is correct. The characters are about 0.5 to 0.75 units
tall.

The horizontal spacing is handled by POV-Ray internally including any kerning information stored in the font. The
required vector <Offset> defines any extra translation between each character. Normally you should specify a zero
for this value. Specifying 0. 1* x would put additional 0.1 units of space between each character. Here is an
example:

text { ttf "tinmomttf" "POV-Ray 3.1" 1, O
pi gment { Red }

Only printable characters are allowed in text objects. Characters such as return, line feed, tabs, backspace etc. are not
supported.

May 1999 POV-Ray 3.1g User Documentation Page 205

45.1.13 Torus

At or us is a 4th order quartic polynomial shape that looks like a donut or inner tube. Because this shape is so
useful and quartics are difficult to define, POV-Ray lets you take a short-cut and define a torus by:

TORUS:
t orus { Major, Minor [TORUS_MODIFIER...] }

TORUS_MODIFIER:
sturm | OBJECT_MODIFIER

where Major is a float value giving the major radius and Minor is a float specifying the minor radius. The major
radius extends from the center of the hole to the mid-line of the rim while the minor radius is the radius of the cross-
section of the rim. The torus is centered at the origin and lies in the x-z-plane with the y-axis sticking through the
hole.

minor radius

center line

Major and minor radius of a torus.

The torus is internally bounded by two cylinders and two rings forming a thick cylinder. With this bounding cylinder
the performance of the torus intersection test is vastly increased. The test for a valid torus intersection, i.e. solving a
4th order polynomial, is only performed if the bounding cylinder is hit. Thus a lot of slow root solving calculations
are avoided.

Calculations for all higher order polynomials must be very accurate. If the torus renders improperly you may add the
keyword st ur mto use POV-Ray's slower-yet-more-accurate Sturmian root solver.
4.5.2 Finite Patch Primitives

There are six totally thin, finite objects which have no well-defined inside. They are bicubic patch, disc, smooth
triangle, triangle, polygon and mesh. They may be combined in CSG union but cannot be use in other types of CSG
(orinside a cl i pped_by statement). Because these types are finite POV-Ray can use automatic bounding on them
to speed up rendering time. As with all shapes they can be translated, rotated and scaled.

May 1999 POV-Ray 3.1g User Documentation Page 206

45.2.1 Bicubic Patch

A bi cubi c_pat ch is a 3D curved surface created from a mesh of triangles. POV-Ray supports a type of bicubic
patch called a Bezier patch. A bicubic patch is defined as follows:

BICUBIC_PATCH:

bi cubi c_patch {
PATCH_ITEMS...
<Point_1>,<Point_2>,<Point_3>,<Point 4>,
<Point_5>,<Point_6>,<Point_7>,<Point_8>,
<Point_9>,<Point_10>,<Point_11>,<Point_12>,
<Point_13>,<Point_14>,<Point_15>,<Point_16>
[OBJECT_MODIFIERS...]

}

PATCH_ITEMS:
t ype Patch_Type | u_steps Num_U_Steps | v_steps Num_V _Steps | fl at ness Flatness

The keyword t ype is followed by a float Patch_Type which currently must be either 0 or 1. For type 0 only the
control points are retained within POV-Ray. This means that a minimal amount of memory is needed but POV-Ray
will need to perform many extra calculations when trying to render the patch. Type 1 preprocesses the patch into
many subpatches. This results in a significant speedup in rendering at the cost of memory.

The four parameters t ype, f | at ness, u_st eps and v_st eps may appear in any order. All but f | at ness are
required. They are followed by 16 vectors (4 rows of 4) that define the x, y, z coordinates of the 16 control points
which define the patch. The patch touches the four corner points <Point_1>, <Point_4>, <Point_13> and
<Point_16> while the other 12 points pull and stretch the patch into shape. The Bezier surface is enclosed by the
convex hull formed by the 16 control points, this is known as the convex hull property.

The keywords u_st eps and v_st eps are each followed by integer values which tell how many rows and
columns of triangles are the minimum to use to create the surface. The maximum number of individual pieces of the
patch that are tested by POV-Ray can be calculated from the following: pieces = 2*u_steps * 2v_steps.

This means that you really should keep u_st eps and v_st eps under 4. Most patches look just fine with
u_steps 3andv_steps 3, which translates to 64 subpatches (128 smooth triangles).

As POV-Ray processes the Bezier patch it makes a test of the current piece of the patch to see if it is flat enough to
just pretend it is a rectangle. The statement that controls this test is specified with the f | at ness keyword followed
by a float. Typical flatness values range from 0 to 1 (the lower the slower). The default if none is specified is 0.0.

If the value for flatness is 0 POV-Ray will always subdivide the patch to the extend specified by u_st eps and
v_st eps. If flatness is greater than 0 then every time the patch is split, POV-Ray will check to see if there is any
need to split further.

There are both advantages and disadvantages to using a non-zero flatness. The advantages include:

- If the patch isn't very curved, then this will be detected and POV-Ray won't waste a lot of time looking at the
wrong pieces.

- If the patch is only highly curved in a couple of places, POV-Ray will keep subdividing there and concentrate it's
efforts on the hard part.

The biggest disadvantage is that if POV-Ray stops subdividing at a particular level on one part of the patch and at a
different level on an adjacent part of the patch there is the potential for cracking. This is typically visible as spots
within the patch where you can see through. How bad this appears depends very highly on the angle at which you
are viewing the patch.

Like triangles, the bicubic patch is not meant to be generated by hand. These shapes should be created by a special

utility. You may be able to acquire utilities to generate these shapes from the same source from which you obtained
POV-Ray. Here is an example:

May 1999 POV-Ray 3.1g User Documentation Page 207

bi cubi c_patch {

type O

flatness 0.01

u_steps 4

v_steps 4

<0, 0, 2>, <1, 0, 0> <2, 0, 0> <3, 0,-2>,
<0, 1 0> <1, 1, 0> <2, 1, 0> <3, 1, 0>,
<0, 2, 0>, <1, 2, 0> <2, 2, 0> <3, 2, 0>,
<0, 3, 2>, <1, 3, 0> <2, 3, 0> <3, 3, -2>

}

The triangles in a POV-Ray bi cubi c_pat ch are automatically smoothed using normal interpolation but it is up
to the user (or the user's utility program) to create control points which smoothly stitch together groups of patches.

45.2.2 Disc

Another flat, finite object available with POV-Ray is the di sc. The disc is infinitely thin, it has no thickness. If you
want a disc with true thickness you should use a very short cylinder. A disc shape may be defined by:

DISC:
di sc { <Center>, <Normal>, Radius [, Hole_Radius] [OBJECT_MODIFIERS...] }

The vector <Center> defines the X, y, z coordinates of the center of the disc. The <Normal> vector describes its
orientation by describing its surface normal vector. This is followed by a float specifying the Radius. This may be
optionally followed by another float specifying the radius of a hole to be cut from the center of the disc.

45.2.3 Mesh

The mesh object can be used to efficiently store large numbers of triangles. Its syntax is:

MESH:
mesh { MESH_TRIANGLE... [MESH_MODIFIER..] }

MESH_TRIANGLE:
triangl e { <Corner_1>, <Corner_2>, <Corner_3> [MESH_TEXTURE] } |
snmoot h_triangle {
<Corner_1>, <Normal_1>,
<Corner_2>, <Normal_2>,
<Corner_3>, <Normal_3>
[MESH_TEXTURE]
}

MESH_TEXTURE:
texture { TEXTURE_IDENTIFIER }

MESH_MODIFIER:
hi erarchy [Boolean] | OBJECT_MODIFIER

Any number of t r i angl e and/or snoot h_t ri angl e statements can be used and each of those triangles can be
individually textured by assigning a texture identifier to it. The texture has to be declared before the mesh is parsed.
It is not possible to use texture definitions inside the triangle or smooth triangle statements. This is a restriction that
is necessary for an efficient storage of the assigned textures. See "Triangle and Smooth Triangle” for more
information on triangles.

The mesh's components are internally bounded by a bounding box hierarchy to speed up intersection testing. The
bounding hierarchy can be turned off with the hi er ar chy of f keyword. This should only be done if memory is
short or the mesh consists of only a few triangles. The default is hi er ar chy on.

May 1999 POV-Ray 3.1g User Documentation Page 208

Copies of a mesh object refer to the same triangle data and thus consume very little memory. You can easily trace
hundred copies of an 10000 triangle mesh without running out of memory (assuming the first mesh fits into
memory).

The mesh object has two advantages over a union of triangles: it needs less memory and it is transformed faster. The
memory requirements are reduced by efficiently storing the triangles vertices and normals. The parsing time for
transformed meshes is reduced because only the mesh object has to be transformed and not every single triangle as it
is necessary for unions.

The mesh object can currently only include triangle and smooth triangle components. That restriction may change,
allowing polygonal components, at some point in the future.

45.2.4 Polygon

The pol ygon object is useful for creating rectangles, squares and other planar shapes with more than three edges.
Their syntax is:

POLYGON:
pol ygon { Number_Of Points, <Point 1> <Point_2>... <Point_n> [OBJECT_MODIFIER...]}

The float Number_Of_Points tells how many points are used to define the polygon. The points <Point_1> through
<Point_n> describe the polygon or polygons. A polygon can contain any number of sub-polygons, either
overlapping or not. In places where an even number of polygons overlaps a hole appears. When you repeat the first
point of a sub-polygon, it closes it and starts a new sub-polygon’s point sequence. This means that all points of a
sub-polygon are different.

If the last sub-polygon is not closed a warning is issued and the program automatically closes the polygon. This is
useful because polygons imported from other programs may not be closed, i.e. their first and last point are not the
same.

All points of a polygon are three-dimensional vectors that have to lay on the same plane. If this is not the case an
error occurs. It is common to use two-dimensional vectors to describe the polygon. POV-Ray assumes that the z
value is zero in this case.

A square polygon that matches the default planar image map is simply:
pol ygon {
4

<0, 0>, <0, 1>, <1, 1>, <1, 0>
texture {
finish { anbient 1 diffuse 0 }
pigment { image_map { gif "test.gif" } }

//scale and rotate as needed here

}

The sub-polygon feature can be used to generate complex shapes like the letter "P", where a hole is cut into another
polygon:
#decl are P = pol ygon {
12,
<0, 0>, <0, 6>, <4, 6> <4, 3> <1, 3> <1, 0> <0, 0>,
<1, 4>, <1, 5> <3, 5> <3, 4> <1, 4>
}

The first sub-polygon (on the first line) describes the outer shape of the letter "P". The second sub-polygon (on the
second line) describes the rectangular hole that is cut in the top of the letter "P". Both rectangles are closed, i.e. their
first and last points are the same.

May 1999 POV-Ray 3.1g User Documentation Page 209

The feature of cutting holes into a polygon is based on the polygon inside/outside test used. A point is considered to
be inside a polygon if a straight line drawn from this point in an arbitrary direction crosses an odd number of edges
(this is known as Jordan's curve theorem).

Another very complex example showing one large triangle with three small holes and three separate, small triangles
is given below:

pol ygon {
28,
<0, 0> <1, 0> <0, 1> <0, 0> /1 large outer triangle
<.3, .7><.4, .7><.3, .8><.3, .7> // small outer triangle #1
<.5, .5><.6, .5><.5 .6><.5 .5> // small outer triangle #2
<.7, .3><.8, .3><.7, .4><.7, .3> /] small outer triangle #3
<.5, .2><.6, .2><.5, .3><.5, .2> // inner triangle #1
<.2, .5> <3, .5><.2, .6><.2, .5> // inner triangle #2
<1, .1><.2, .1><.1, .2><.1, .1> // inner triangle #3

}

4.5.2.5 Triangle and Smooth Triangle

The t ri angl e primitive is available in order to make more complex objects than the built-in shapes will permit.
Triangles are usually not created by hand but are converted from other files or generated by utilities. A triangle is
defined by

TRIANGLE:
triangl e { <Corner_1>, <Corner_2>, <Corner_3> [OBJECT_MODIFIER...] }

where <Corner_n> is a vector defining the X, y, z coordinates of each corner of the triangle.

Because triangles are perfectly flat surfaces it would require extremely large numbers of very small triangles to
approximate a smooth, curved surface. However much of our perception of smooth surfaces is dependent upon the
way light and shading is done. By artificially modifying the surface normals we can simulate a smooth surface and
hide the sharp-edged seams between individual triangles.

The smoot h_t ri angl e primitive is used for just such purposes. The smooth triangles use a formula called Phong
normal interpolation to calculate the surface normal for any point on the triangle based on normal vectors which you
define for the three corners. This makes the triangle appear to be a smooth curved surface. A smooth triangle is
defined by

SMOOTH_TRIANGLE:
snoot h_triangle {
<Corner_1>, <Normal_1>,
<Corner_2>, <Normal_2>,
<Corner_3>, <Normal 3>
[OBJECT_MODIFIER...]
}

where the corners are defined as in regular triangles and <Normal_n> is a vector describing the direction of the
surface normal at each corner.

These normal vectors are prohibitively difficult to compute by hand. Therefore smooth triangles are almost always
generated by utility programs. To achieve smooth results, any triangles which share a common vertex should have
the same normal vector at that vertex. Generally the smoothed normal should be the average of all the actual
normals of the triangles which share that point.

The mesh object is a way to combine many t ri angl e and snoot h_t ri angl e objects together in a very
efficient way. See "Mesh" for details.

May 1999 POV-Ray 3.1g User Documentation Page 210

45.3 Infinite Solid Primitives

There are five polynomial primitive shapes that are possibly infinite and do not respond to automatic bounding.
They are plane, cubic, poly, quadric and quartic. They do have a well defined inside and may be used in CSG and
inside a cl i pped_by statement. As with all shapes they can be translated, rotated and scaled.

45.3.1 Plane

The pl ane primitive is a simple way to define an infinite flat surface. The plane is specified as follows:

PLANE:
pl ane { <Normal>, Distance [OBJECT_MODIFIERS...] }

The <Normal> vector defines the surface normal of the plane. A surface normal is a vector which points up from
the surface at a 90 degree angle. This is followed by a float value that gives the distance along the normal that the
plane is from the origin (that is only true if the normal vector has unit length; see below). For example:

plane { <0, 1, 0>, 4}
This is a plane where straight up is defined in the positive y-direction. The plane is 4 units in that direction away
from the origin. Because most planes are defined with surface normals in the direction of an axis you will often see
planes defined using the x, y or z built-in vector identifiers. The example above could be specified as:

plane { vy, 4}

The plane extends infinitely in the x- and z-directions. It effectively divides the world into two pieces. By definition
the normal vector points to the outside of the plane while any points away from the vector are defined as inside. This
inside/outside distinction is important when using planes in CSG and cl i pped_by. Itis also important when
using fog or atmospheric media. If you place a camera on the "inside™ half of the world, then the fog or media will
not appear. Such issues arise in any solid object but it is more common with planes. Users typically know when
they've accidentally placed a camera inside a sphere or box but "inside a plane™ is an unusual concept. You can
reverse the inside/outside properties of an object by adding the object modifier i nver se. See "Inverse" and
"Empty and Solid Objects" for details.

A plane is called a polynomial shape because it is defined by a first order polynomial equation. Given a plane:
plane { <A, B, C, D}
it can be represented by the equation A*x + B*y + C*z - D*sqrt(A” + B? + C%) = 0.

Therefore our example pl ane{y, 4} is actually the polynomial equation y=4. You can think of this as a set of all
X, Y, Z points where all have y values equal to 4, regardless of the x or z values.

This equation is a first order polynomial because each term contains only single powers of X, y or z. A second order
equation has terms like X2, y?, z%, xy, xz and yz. Another name for a 2nd order equation is a quadric equation. Third
order polys are called cubics. A 4th order equation is a quartic. Such shapes are described in the sections below.

4.5.3.2 Poly, Cubic and Quartic
Higher order polynomial surfaces may be defined by the use of a pol y shape. The syntax is

POLY:
poly { Order, <Al, A2, A3, ..An>[POLY_MODIFIERS..]}

POLY_MODIFIERS:
sturm | OBJECT_MODIFIER

where Order is an integer number from 2 to 7 inclusively that specifies the order of the equation. A1, A2, ... An are
float values for the coefficients of the equation. There are m such terms where

May 1999 POV-Ray 3.1g User Documentation Page 211

n = ((Order+1)*(Order+2)*(Order+3))/6.

The cubi ¢ object is an alternate way to specify 3rd order polys. Its syntax is:

CUBIC:

cubi ¢ { <Al, A2, A3, .. A20>[POLY_MODIFIERS..]}

Also 4th order equations may be specified with the quar t i ¢ object. Its syntax is:

QUARTIC:

quartic { <Al, A2, A3, ..A35>[POLY_MODIFIERS..] }

The following table shows which polynomial terms correspond to which x,y,z factors. Remember cubi ¢ is
actually a 3rd order polynomial and quar t i c is 4th order.

|2nd [3rd [4th [5th [6th [7th I5sth [6th [7th l6th |7th
A [x2 X3 x4 (x5 x8 x7 Ag y2 [xy® [x3yR Ag 23 [xz3
A [xy [x%y |3y Xt [xPy xBy A Y228 |xy2z3 |x2y2z3 Agr |22 [xz?
A; |xz X%z [x3z |x%z [x%z Xz Ay Y222 |xy?2z2 [x2y%z2 Ags [z |xz
A, |x [x2 [x2 |x4 x° x5 A Y22 |xy2z |x%y?z Ags |1 [x
A5 y2 Xy2 X2y2 X3y2 X4y2 X5y2 A45 y2 Xy2 X2y2 A85 y7
As |yz |xyz |X%yz [x¥yz [x%yz |XSyz A lyz* |xyz* [xyz* Ags ybz
Az ly |xy Xy Py Xty Xy Ay |y22 |xyz® |x%yz® Agy ye
Ag |z2 |xz?2 |x%z2 [x3z2 [x%z22 |x®z2 Agg |yz2 |xyz? [x2yz2 Ags y°z2
Ay [z [xz Xz X%z [x%z x5z A Yz |Xyz |x3yz Ago y5z
Aso X X2 xE o |xt x° Aso ly |xy X%y Ago y®
A, v xy® Ay Y3 [xby® Asy |25 |x2B |25 Aoy yiz8
Ao y2z |xy?z |x2y?%z |x3y?z |x%?z As, |24 |xz* X% Ag> y4z2
Aqz y2oxy? [xqy? |x3y? [xdy? Asz (22 |xz® |x%Z8 Agz yiz
Ay yz2 |xyz? |x%yz? |x3yz? ([x%yz2 Asy (22 [x22 (X322 Ay, y
Ass yz |xyz |x%yz |x%yz |x%z Ass |z Xz X%z Ags y3z4
Ate y |xy P&y ey Xy Asg |1 X X2 Age y3z3
A7 3 |xz® (X2 [x3z2 |x4ZB As; y6 xy® Agy y3z2
Asg 2 [xz2 [x%z2 |x3z22 |x*z2 Asg y5z |xy°z Ags y3z
Aqg z |xz [xz [xz x4z Asg yo Xy® Agg y3
Asg 1 |x X2 x3 x4 Aso yiz2 |xy*z2 A10o y2z°
Ay v ooyt Ayt ey Asy y'z |xy*z Aio1 yz!
Ay vz |xy®z |x%y%z [x%ydz Ag2 y* xy* Aoz y’z?
Ao L L A LS As3 yz? |xy’Z Agoz y’z?
A24 y222 Xy222 X2y222 X3y222 A64 y322 XySZZ A104 yZZ
Ags y’z |xy%z (X% (x%y%z Ags Y’z [xyz Auos y?
Age G D D o R P Ass yeoxy? Augs yz°
Ay yz® |xyz® |x%yz® |x3yz3 Ag7 y2z4 |xy?z* Aro7 yz°
Aog yz2 |xyz? [x%yz?2 |x%yz? Ass y2z% |xy2z3 A1os yz*
A yz |xyz |x¥yz |x3yz Aso y2z2 |xy?z2 A1og yz3
As y xy Xy Xy Aro y’z |xy’z A1 yz?
Az ral Vool Y Al ey Az y2 Xy?2 A yz
As, 2 [xz® |x%Z® %8z A yz° |xyz® A1 y
Ass 2 |xz2 |x%z2 |x%z2 Azs yz4 |xyz* Ai13 z’
Azs z Xz X2z x3z Azs yz3 |xyz® Ai14 VAl
Ass 1 X X2 x3 Ass yz2 |xyz? Ais yAl

May 1999

POV-Ray 3.1g User Documentation

Page 212

Asg AR A oS Arg yz |xyz At z*
Ag7 y'z |xy'z X%z Az7 y Xy AVEY, z3
Asg y? xyt o [xy? Azg z° xz8 Al1g 22
Asg y3z2 |xy3z2 [x2yS3z2 Az z5 xz5 Ai1g z
Aso y3z |xy3z |x3y®z Asgo z xz4 A120 1

Polynomial shapes can be used to describe a large class of shapes including the torus, the lemniscate, etc. For
example, to declare a quartic surface requires that each of the coefficients (Al ... A35) be placed in order into a
single long vector of 35 terms.

As an example let's define a torus the hard way. A Torus can be represented by the equation:
X4+y4+z4+2X2y2+2X222+2y222_

2(r 0°+r 133 +2(r 0°-r 1% y*-

2(r 0°+r 1)+ (r 0°-r_1%%*=0

Where r_0 is the major radius of the torus, the distance from the hole of the donut to the middle of the ring of the
donut, and r_1 is the minor radius of the torus, the distance from the middle of the ring of the donut to the outer

surface. The following object declaration is for a torus having major radius 6.3 minor radius 3.5 (Making the
maximum width just under 20).

/1 Torus having major radius sqrt(40), mnor radius sqrt(12)

quartic {
<1, 0, 0, 0, 2, 0, 0, 2, 0,
-104, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 2, 0, 56, 0,
0, 0, 0, 1, 0, -104, 0, 784 >
sturm

}

Poly, cubic and quartics are just like quadrics in that you don't have to understand what one is to use one. The file
shapesq. i nc has plenty of pre-defined quartics for you to play with.

Polys use highly complex computations and will not always render perfectly. If the surface is not smooth, has
dropouts, or extra random pixels, try using the optional keyword st ur min the definition. This will cause a slower
but more accurate calculation method to be used. Usually, but not always, this will solve the problem. If sturm
doesn't work, try rotating or translating the shape by some small amount.

There are really so many different polynomial shapes, we can't even begin to list or describe them all. If you are
interested and mathematically inclined, an excellent reference book for curves and surfaces where you'll find more
polynomial shape formulas is:

"The CRC Handbook of Mathematical Curves and Surfaces"
David von Seggern
CRC Press, 1990

4.5.3.3 Quadric

The quadr i ¢ object can produce shapes like paraboloids (dish shapes) and hyperboloids (saddle or hourglass
shapes). It can also produce ellipsoids, spheres, cones, and cylinders but you should use the spher e, cone, and
cyl i nder objects built into POV-Ray because they are faster than the quadric version. Note that you do not
confuse "quaDRic" with "quaRTic". A quadric is a 2nd order polynomial while a quartic is 4th order. Quadrics
render much faster and are less error-prone but produce less complex objects. The syntax is:

QUADRIC:
quadric { <A, B, C>, <D, E, F>, <G, H, I>,J [OBJECT_MODIFIERS...] }

May 1999 POV-Ray 3.1g User Documentation Page 213

Although the syntax actually will parse 3 vector expressions followed by a float, we traditionally have written the
syntax as above where A through J are float expressions. These 10 float that define a surface of x, y, z points which
satisfy the equation

AX+By+CZ2+Dxy+Exz+Fyz+Gx+Hy+1z+J=0

Different values of A, B, C, ... J will give different shapes. If you take any three dimensional point and use its x, y
and z coordinates in the above equation the answer will be 0 if the point is on the surface of the object. The answer
will be negative if the point is inside the object and positive if the point is outside the object. Here are some
examples:

XZ+Y?+Z7°-1=0 Sphere
X?+Y?-1=0 Infinite cylinder along the Z axis
X?+Y?-7°=0 Infinite cone along the Z axis

The easiest way to use these shapes is to include the standard file shapes. i nc into your program. It contains
several pre-defined quadrics and you can transform these pre-defined shapes (using translate, rotate and scale) into
the ones you want. For a complete list, see the file shapes. i nc.

4.5.4 Constructive Solid Geometry

In addition to all of the primitive shapes POV-Ray supports, you can also combine multiple simple shapes into
complex shapes using Constructive Solid Geometry (CSG). There are four basic types of CSG operations: union,
intersection, difference, and merge. CSG objects can be composed of primitives or other CSG objects to create
more, and more complex shapes.

45.4.1 Inside and Qutside

Most shape primitives, like spheres, boxes and blobs divide the world into two regions. One region is inside the
object and one is outside. Given any point in space you can say it's either inside or outside any particular primitive
object. Well, it could be exactly on the surface but this case is rather hard to determine due to numerical problems.

Even planes have an inside and an outside. By definition, the surface normal of the plane points towards the outside
of the plane. You should note that triangles and triangle-based shapes cannot be used as solid objects in CSG since
they have no well defined inside and outside.

CSG uses the concepts of inside and outside to combine shapes together as explained in the following sections.

Imagine you have two objects that partially overlap like shown in the figure below. Four different areas of points
can be distinguished: points that are neither in object A nor in object B, points that are in object A but not in object B,
points that are not in object A but in object B and last not least points that are in object A and object B.

Two overlapping objects.

May 1999 POV-Ray 3.1g User Documentation Page 214

Keeping this in mind it will be quite easy to understand how the CSG operations work.

When using CSG it is often useful to invert an object so that it'll be inside-out. The appearance of the object is not
changed, just the way that POV-Ray perceives it. When the i nver se keyword is used the inside of the shape is
flipped to become the outside and vice versa.

The inside/outside distinction is not important for a uni on, but is important fori nt er secti on, di f f er ence,
and nmer ge.Therefore any objects may be combined using uni on but only solid objects, i.e. objects that have a
well-defined interior can be used in the other kinds of CSG. The objects described in "Finite Patch Primitives" have
no well defined inside/outside. All objects described in the sections "Finite Solid Primitives" and "Infinite Solid
Primitives".

45.4.2 Union

The union of two objects.
The simplest kind of CSG is the uni on. The syntax is:

UNION:
uni on { OBJECTS... [OBJECT MODIFIERS..] }

Unions are simply glue used to bind two or more shapes into a single entity that can be manipulated as a single
object. The image above shows the union of A and B. The new object created by the union operation can be scaled,
translated and rotated as a single shape. The entire union can share a single texture but each object contained in the
union may also have its own texture, which will override any texture statements in the parent object.

You should be aware that the surfaces inside the union will not be removed. As you can see from the figure this may
be a problem for transparent unions. If you want those surfaces to be removed you'll have to use the ner ge
operations explained in a later section.

The following union will contain a box and a sphere.
uni on {
box { <-1.5, -1, -1> <0.5, 1, 1>}
cylinder { <0.5, 0, -1> <0.5, 0, 1> 1}
}

Earlier versions of POV-Ray placed restrictions on unions so you often had to combine objects with conposi t e
statements. Those earlier restrictions have been lifted so conposi t e is no longer needed. It is still supported for
backwards compatibility.

May 1999 POV-Ray 3.1g User Documentation Page 215

45.4.3 Intersection

The i nt er sect i on object creates a shape containing only those areas where all components overlap. A point is
part an intersection if it is inside both objects, A and B, as show in the figure below.

The intersection of two objects.
The syntax is:

INTERSECTION:
i ntersection { SOLID OBJECTS... [OBJECT_MODIFIERS...] }

The component objects must have well defined inside/outside properties. Patch objects are not allowed. Note that if
all components do not overlap, the intersection object disappears.

Here is an example that overlaps:

i ntersection {
box { <-1.5, -1, -1> <0.5, 1, 1>}
cylinder { <0.5, 0, -1>, <0.5, 0, 1> 1}

45.4.4 Difference

The CSG di f f er ence operation takes the intersection between the first object and the inverse of all subsequent
objects. Thus only points inside object A and outside object B belong to the difference of both objects.

The results is a subtraction of the 2nd shape from the first shape as shown in the figure below.

May 1999 POV-Ray 3.1g User Documentation Page 216

The difference between two objects.
The syntax is:

DIFFERENCE:
di fference { SOLID_OBJECTS... [OBJECT MODIFIERS..]}

The component objects must have well defined inside/outside properties. Patch objects are not allowed. Note that if
the first object is entirely inside the subtracted objects, the difference object disappears.

Here is an example of a properly formed difference:

di fference {
box { <-1.5, -1, -1> <0.5, 1, 1>}
cylinder { <0.5, 0, -1> <0.5, 0, 1> 1}
}

Note that internally, POV-Ray simply adds the i nver se keyword to the second (and subsequent) objects and then
performs an intersection. The example above is equivalent to:

i ntersection {

box { <-1.5, -1, -1> <0.5, 1, 1>}

cylinder { <0.5, 0, -1> <0.5, 0, 1> 1 inverse }
}

4545 Merge

The uni on operation just glues objects together, it does not remove the objects' surfaces inside the uni on. Under
most circumstances this doesn't matter. However if a transparent uni on is used, those interior surfaces will be
visible. The mer ge operations can be used to avoid this problem. It works just like uni on but it eliminates the
inner surfaces like shown in the figure below.

Merge removes inner surfaces.

The syntax is:

MERGE:
mer ge { SOLID_OBJECTS... [OBJECT MODIFIERS..]}

The component objects must have well defined inside/outside properties. Patch objects are not allowed. Note that
ner ge is slower rendering than uni on so it should only be used when it is really necessary.

May 1999 POV-Ray 3.1g User Documentation Page 217

455 Light Sources

The | i ght _sour ce is not really an object. Light sources have no visible shape of their own. They are just points
or areas which emit light. They are categorized as objects so that they can be combined with regular objects using
uni on. Their full syntax is:

LIGHT_SOURCE:
I i ght _source { <Location>, COLOR [LIGHT_MODIFIERS...] }

LIGHT_MODIFIER:
LIGHT_TYPE | SPOTLIGHT_ITEM |
AREA_LIGHT_ITEMS | GENERAL_LIGHT_MODIFIERS

LIGHT_TYPE:
spotlight | shadow ess | cylinder

SPOTLIGHT_ITEM:
radi us Radius | fall off Falloff | tightness Tightness | poi nt_at <Spot>

AREA_LIGHT_ITEM:
area_l i ght <Axis_1>, <Axis_2>, Size_1, Size_2 |
adapt i ve Adaptive | jitter Jitter

GENERAL_LIGHT_MODIFIERS:
| ooks_l i ke { OBJECT} | TRANSFORMATION
f ade_di st ance Fade_Distance | fade_power Fade_Power |
nmedi a_att enuati on [Bool] | nmedi a_i nteracti on [Bool]

The different types of light sources and the optional modifiers are described in the following sections.

The first two items are common to all light sources. The <Location> vector gives the location of the light. The
COLOR gives the color of the light. Only the red, green, and blue components are significant. Any transmit or filter
values are ignored. Note that you vary the intensity of the light as well as the color using this parameter. A color
suchasrgb <0.5, 0.5, 0. 5> gives a white light that is half the normal intensity.

All of the keywords or items in the syntax specification above may appear in any order. Some keywords only have

effect if specified with other keywords. The keywords are grouped into functional categories to make it clear which
keywords work together. The GENERAL_LIGHT_MODIFIERS work with all types of lights and all options. Note

that TRANSFORMATIONS such ast r ansl at e, r ot at e etc. may be applied but no other OBJECT_MODIFIERS
may be used.

There are four mutually exclusive light types. 1f no LIGHT_TYPE is specified it is a point light. The other choices
are spot | i ght,shadow ess, and cyl i nder.

4.5.5.1 Point Lights

The simplest kid of light is a point light. A point light source sends light of the specified color uniformly in all
directions. The default light type is a point source. The <Location> and COLOR is all that is required. For
example:

[ight _source {
<1000, 1000, - 1000>, rgb <1,0.75,0> //an orange |ight
}

4.5.5.2 Spotlights

Normally light radiates outward equally in all directions from the source. However the spot | i ght keyword can
be used to create a cone of light that is bright in the center and falls of to darkness in a soft fringe effect at the edge.

May 1999 POV-Ray 3.1g User Documentation Page 218

Although the cone of light fades to soft edges, objects illuminated by spotlights still cast hard shadows. The syntax
is:

SPOTLIGHT_SOURCE:
i ght _source { <Location>, COLOR spot|ight [LIGHT_MODIFIERS..]] }

LIGHT_MODIFIER:
SPOTLIGHT_ITEM | AREA_LIGHT_ITEMS | GENERAL_LIGHT_MODIFIERS

SPOTLIGHT_ITEM:
radi us Radius | fall off Falloff | tightness Tightness | poi nt_at <Spot>

The poi nt _at keyword tells the spotlight to point at a particular 3D coordinate. A line from the location of the
spotlight to the poi nt _at coordinate forms the center line of the cone of light. The following illustration will be
helpful in understanding how these values relate to each other.

location

The geometry of a spotlight.

Thefal |l of f,radi us,andti ght ness keywords control the way that light tapers off at the edges of the cone.
These four keywords apply only when the spot | i ght or cyl i nder keywords are used.

The f al | of f keyword specifies the overall size of the cone of light. This is the point where the light falls off to
zero intensity. The float value you specify is the angle, in degrees, between the edge of the cone and center line.
The r adi us keyword specifies the size of the "hot-spot™ at the center of the cone of light. The "hot-spot" is a
brighter cone of light inside the spotlight cone and has the same center line. The r adi us value specifies the angle,
in degrees, between the edge of this bright, inner cone and the center line. The light inside the inner cone is of
uniform intensity. The light between the inner and outer cones tapers off to zero.

For example withr adi us 10 andf al | of f 20 the light from the center line out to 10 degrees is full intensity.
From 10 to 20 degrees from the center line the light falls off to zero intensity. At 20 degrees or greater there is no
light. Note that if the radius and falloff values are close or equal the light intensity drops rapidly and the spotlight
has a sharp edge. The default values for both r adi us and f al | of f is 70.

The values for these two parameters are half the opening angles of the corresponding cones, both angles have to be

smaller than 90 degrees. The